IDEAS home Printed from https://ideas.repec.org/a/rss/jnljms/v3i5p8.html
   My bibliography  Save this article

Financial Impediments in Harnessing Thar Coal for the Creation of Electrical Energy in Pakistan

Author

Listed:
  • Farhan-ul-Furqan Khan
  • Ahmed Tunio
  • Shakeel Ahmed
  • Qazi Muhammad Moinuddin Abro

Abstract

The goal of this research is to identity the financial impediments in harnessing Thar coal reserves for the creation of electrical energy in the country. It is estimated that about 175 billion tons of Lignite reserves are located near Islamkot (Tharparkar district) and it is the fourth largest reserve in the world that is spread over 9100 square kilometers. The cost estimation of these reserves is about $ 25 trillion. These reserves have potential to generate 100,000 MW of electricity for 300 years and Di-Methyl Ether (Diesel) can also be produced from this coal. These reserves are greater than the summation of total oil reserves of Saudi Arabia and Iran. Thar coal block II and VIII is enough to generate electricity for 40 and 76 years for Pakistan respectively. The huge finance of approximately USD 2.6 billion is required to utilize these Coal reserves for energy purpose and some agreements were signed for the development of these coal reserves but all proposals and agreements falsified due to financial problems which have been thoroughly discussed and highlighted in this study.

Suggested Citation

  • Farhan-ul-Furqan Khan & Ahmed Tunio & Shakeel Ahmed & Qazi Muhammad Moinuddin Abro, 2014. "Financial Impediments in Harnessing Thar Coal for the Creation of Electrical Energy in Pakistan," International Journal of Management Sciences, Research Academy of Social Sciences, vol. 3(5), pages 370-378.
  • Handle: RePEc:rss:jnljms:v3i5p8
    as

    Download full text from publisher

    File URL: http://rassweb.org/admin/pages/ResearchPapers/Paper%208_1497254749.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Lifeng & Xiao, Yunhan & Gallagher, Kelly Sims & Wang, Bo & Xu, Xiang, 2008. "Technical, environmental, and economic assessment of deploying advanced coal power technologies in the Chinese context," Energy Policy, Elsevier, vol. 36(7), pages 2709-2718, July.
    2. Yang, Ming, 2009. "Climate change and energy policies, coal and coalmine methane in China," Energy Policy, Elsevier, vol. 37(8), pages 2858-2869, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moinul Islam & Keiichiro Kanemoto & Shunsuke Managi, 2016. "Impact of Trade Openness and Sector Trade on Embodied Greenhouse Gases Emissions and Air Pollutants," Journal of Industrial Ecology, Yale University, vol. 20(3), pages 494-505, June.
    2. Wu Dan & Xie Xuxuan, 2013. "Economic Analysis of Multi-pollutant Control in Coal-Fired Electricity Plants in China," EEPSEA Research Report rr2013022, Economy and Environment Program for Southeast Asia (EEPSEA), revised Feb 2013.
    3. Wang, Ke & Zhang, Jianjun & Cai, Bofeng & Yu, Shengmin, 2019. "Emission factors of fugitive methane from underground coal mines in China: Estimation and uncertainty," Applied Energy, Elsevier, vol. 250(C), pages 273-282.
    4. Shiqing Wang & Xiaolong Wang & Shiwang Gao & Wei Yan & Yu Huang & Haoyi Chen & Shisen Xu & Tiancun Xiao, 2017. "Novel technology for coal mine methane utilization, process simulation and catalyst development," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(1), pages 29-39, February.
    5. Ma, Teng & Takeuchi, Kenji, 2017. "Technology choice for reducing NOx emissions: An empirical study of Chinese power plants," Energy Policy, Elsevier, vol. 102(C), pages 362-376.
    6. Uddin, Noim & Blommerde, Mascha & Taplin, Ros & Laurence, David, 2015. "Sustainable development outcomes of coal mine methane clean development mechanism Projects in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 1-9.
    7. Mujammil Asdhiyoga Rahmanta & Almas Aprilana & Ruly & Nur Cahyo & Tiva Winahyu Dwi Hapsari & Eko Supriyanto, 2024. "Techno-Economic and Environmental Impact of Biomass Co-Firing with Carbon Capture and Storage in Indonesian Power Plants," Sustainability, MDPI, vol. 16(8), pages 1-21, April.
    8. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
    9. Zhou, Wenji & Zhu, Bing & Chen, Dingjiang & Zhao, Fangxian & Fei, Weiyang, 2014. "How policy choice affects investment in low-carbon technology: The case of CO2 capture in indirect coal liquefaction in China," Energy, Elsevier, vol. 73(C), pages 670-679.
    10. Jiaxin Guo & Zhenqi Hu & Yusheng Liang, 2022. "Causes and Countermeasures for the Failure of Mining Land Use Policy Reform: Practice Analysis from China," Land, MDPI, vol. 11(9), pages 1-19, August.
    11. Cai, Y.P. & Huang, G.H. & Tan, Q. & Yang, Z.F., 2011. "An integrated approach for climate-change impact analysis and adaptation planning under multi-level uncertainties. Part I: Methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2779-2790, August.
    12. Stua, Michele, 2013. "Evidence of the clean development mechanism impact on the Chinese electric power system's low-carbon transition," Energy Policy, Elsevier, vol. 62(C), pages 1309-1319.
    13. Chen, G.Q. & Zhang, Bo, 2010. "Greenhouse gas emissions in China 2007: Inventory and input-output analysis," Energy Policy, Elsevier, vol. 38(10), pages 6180-6193, October.
    14. Zhou, Wenji & Jiang, Di & Chen, Dingjiang & Griffy-Brown, Charla & Jin, Yong & Zhu, Bing, 2016. "Capturing CO2 from cement plants: A priority for reducing CO2 emissions in China," Energy, Elsevier, vol. 106(C), pages 464-474.
    15. Zhang, Bo & Chen, G.Q., 2014. "Methane emissions in China 2007," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 886-902.
    16. Wu, Ning & Parsons, John E. & Polenske, Karen R., 2013. "The impact of future carbon prices on CCS investment for power generation in China," Energy Policy, Elsevier, vol. 54(C), pages 160-172.
    17. Zhou, Wenji & Zhu, Bing & Fuss, Sabine & Szolgayová, Jana & Obersteiner, Michael & Fei, Weiyang, 2010. "Uncertainty modeling of CCS investment strategy in China's power sector," Applied Energy, Elsevier, vol. 87(7), pages 2392-2400, July.
    18. Wang, Bing & Kocaoglu, Dundar F. & Daim, Tugrul U. & Yang, Jiting, 2010. "A decision model for energy resource selection in China," Energy Policy, Elsevier, vol. 38(11), pages 7130-7141, November.
    19. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2015. "Prospects of carbon capture and storage (CCS) in China’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 157(C), pages 229-244.
    20. Mathews, John A. & Tan, Hao, 2013. "The transformation of the electric power sector in China," Energy Policy, Elsevier, vol. 52(C), pages 170-180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rss:jnljms:v3i5p8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Danish Khalil (email available below). General contact details of provider: http://www.rassweb.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.