IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i7p2709-2718.html
   My bibliography  Save this article

Technical, environmental, and economic assessment of deploying advanced coal power technologies in the Chinese context

Author

Listed:
  • Zhao, Lifeng
  • Xiao, Yunhan
  • Gallagher, Kelly Sims
  • Wang, Bo
  • Xu, Xiang

Abstract

The goal of this study is to evaluate the technical, environmental, and economic dimensions of deploying advanced coal-fired power technologies in China. In particular, we estimate the differences in capital cost and overall cost of electricity (COE) for a variety of advanced coal-power technologies based on the technological and economic levels in 2006 in China. This paper explores the economic gaps between Integrated Gasification Combined Cycle (IGCC) and other advanced coal power technologies, and compares 12 different power plant configurations using advanced coal power technologies. Super critical (SC) and ultra super critical (USC) pulverized coal (PC) power generation technologies coupled with pollution control technologies can meet the emission requirements. These technologies are highly efficient, technically mature, and cost-effective. From the point of view of efficiency, SC and USC units are good choices for power industry. The net plant efficiency for IGCC has reached 45%, and it has the best environmental performance overall. The cost of IGCC is much higher, however, than that of other power generation technologies, so the development of IGCC is slow throughout the world. Incentive policies are needed if IGCC is to be deployed in China.

Suggested Citation

  • Zhao, Lifeng & Xiao, Yunhan & Gallagher, Kelly Sims & Wang, Bo & Xu, Xiang, 2008. "Technical, environmental, and economic assessment of deploying advanced coal power technologies in the Chinese context," Energy Policy, Elsevier, vol. 36(7), pages 2709-2718, July.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:7:p:2709-2718
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00158-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Lifeng & Gallagher, Kelly Sims, 2007. "Research, development, demonstration, and early deployment policies for advanced-coal technology in China," Energy Policy, Elsevier, vol. 35(12), pages 6467-6477, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Teng & Takeuchi, Kenji, 2017. "Technology choice for reducing NOx emissions: An empirical study of Chinese power plants," Energy Policy, Elsevier, vol. 102(C), pages 362-376.
    2. Wu Dan & Xie Xuxuan, 2013. "Economic Analysis of Multi-pollutant Control in Coal-Fired Electricity Plants in China," EEPSEA Research Report rr2013022, Economy and Environment Program for Southeast Asia (EEPSEA), revised Feb 2013.
    3. Wu, Ning & Parsons, John E. & Polenske, Karen R., 2013. "The impact of future carbon prices on CCS investment for power generation in China," Energy Policy, Elsevier, vol. 54(C), pages 160-172.
    4. Zhou, Wenji & Zhu, Bing & Fuss, Sabine & Szolgayová, Jana & Obersteiner, Michael & Fei, Weiyang, 2010. "Uncertainty modeling of CCS investment strategy in China's power sector," Applied Energy, Elsevier, vol. 87(7), pages 2392-2400, July.
    5. Mathews, John A. & Tan, Hao, 2013. "The transformation of the electric power sector in China," Energy Policy, Elsevier, vol. 52(C), pages 170-180.
    6. Zhou, Wenji & Zhu, Bing & Chen, Dingjiang & Zhao, Fangxian & Fei, Weiyang, 2014. "How policy choice affects investment in low-carbon technology: The case of CO2 capture in indirect coal liquefaction in China," Energy, Elsevier, vol. 73(C), pages 670-679.
    7. Li, Ying & Lukszo, Zofia & Weijnen, Margot, 2015. "The implications of CO2 price for China’s power sector decarbonization," Applied Energy, Elsevier, vol. 146(C), pages 53-64.
    8. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2015. "Prospects of carbon capture and storage (CCS) in China’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 157(C), pages 229-244.
    9. Pérez-Fortes, M. & Bojarski, A.D. & Velo, E. & Nougués, J.M. & Puigjaner, L., 2009. "Conceptual model and evaluation of generated power and emissions in an IGCC plant," Energy, Elsevier, vol. 34(10), pages 1721-1732.
    10. Mujammil Asdhiyoga Rahmanta & Almas Aprilana & Ruly & Nur Cahyo & Tiva Winahyu Dwi Hapsari & Eko Supriyanto, 2024. "Techno-Economic and Environmental Impact of Biomass Co-Firing with Carbon Capture and Storage in Indonesian Power Plants," Sustainability, MDPI, vol. 16(8), pages 1-21, April.
    11. Zhou, Wenji & Jiang, Di & Chen, Dingjiang & Griffy-Brown, Charla & Jin, Yong & Zhu, Bing, 2016. "Capturing CO2 from cement plants: A priority for reducing CO2 emissions in China," Energy, Elsevier, vol. 106(C), pages 464-474.
    12. Farhan-ul-Furqan Khan & Ahmed Tunio & Shakeel Ahmed & Qazi Muhammad Moinuddin Abro, 2014. "Financial Impediments in Harnessing Thar Coal for the Creation of Electrical Energy in Pakistan," International Journal of Management Sciences, Research Academy of Social Sciences, vol. 3(5), pages 370-378.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    2. Chen, Xiaoguang & Ye, Jingjing, 2017. "When the Wind Blows: Spatial Spillover Effects of Urban Air Pollution," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258256, Agricultural and Applied Economics Association.
    3. Wu, Ning & Parsons, John E. & Polenske, Karen R., 2013. "The impact of future carbon prices on CCS investment for power generation in China," Energy Policy, Elsevier, vol. 54(C), pages 160-172.
    4. Majidpour, Mehdi, 2012. "Heavy duty gas turbines in Iran, India and China: Do national energy policies drive the industries?," Energy Policy, Elsevier, vol. 41(C), pages 723-732.
    5. Mathews, John A. & Tan, Hao, 2013. "The transformation of the electric power sector in China," Energy Policy, Elsevier, vol. 52(C), pages 170-180.
    6. Zhou, Yun, 2010. "Why is China going nuclear?," Energy Policy, Elsevier, vol. 38(7), pages 3755-3762, July.
    7. Rong, Fang & Victor, David G., 2011. "Coal liquefaction policy in China: Explaining the policy reversal since 2006," Energy Policy, Elsevier, vol. 39(12), pages 8175-8184.
    8. Ziyuan Sun & Yanli Li & Man Wang & Xiaoping Wang & Yiwen Pan & Feng Dong, 2019. "How does vertical integration promote innovation corporate social responsibility (ICSR) in the coal industry? A multiple-step multiple mediator model," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-23, June.
    9. Lam, Long T. & Branstetter, Lee & Azevedo, Inês M.L., 2017. "China's wind industry: Leading in deployment, lagging in innovation," Energy Policy, Elsevier, vol. 106(C), pages 588-599.
    10. Wang, Hao & Nakata, Toshihiko, 2009. "Analysis of the market penetration of clean coal technologies and its impacts in China's electricity sector," Energy Policy, Elsevier, vol. 37(1), pages 338-351, January.
    11. Hengfu Shui & Zhenyi Cai & Chunbao Xu, 2010. "Recent Advances in Direct Coal Liquefaction," Energies, MDPI, vol. 3(2), pages 1-16, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:7:p:2709-2718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.