IDEAS home Printed from https://ideas.repec.org/a/rss/jnljfe/v1i1p3.html
   My bibliography  Save this article

Investigating the Long time Memory in the Future Market of Gold

Author

Listed:
  • Mohsen Mehrara
  • Nafiseh Behradmehr
  • Mitra Saboonchi

Abstract

This paper concentrates on investigating the long memory property of the gold future markets in the United States. The data set consists of daily future prices, and long memory tests based on ARFIMA with use of three quantitative methods: Non Linear least Square (NLS), Modified Profile Likelihood (MPL) and Exact Maximum Likelihood (ML). The results of the ARFIMA model don show strong evidence of long memory, but it implies short memory. So prices follow a predictable behavior, which is inconsistent with the efficient market hypothesis. The evidence of short memory in prices, however, shows that uncertainty or risk is an important determinant of behavior of daily future prices in the gold future market of the United States.

Suggested Citation

  • Mohsen Mehrara & Nafiseh Behradmehr & Mitra Saboonchi, 2013. "Investigating the Long time Memory in the Future Market of Gold," International Journal of Financial Economics, Research Academy of Social Sciences, vol. 1(1), pages 28-32.
  • Handle: RePEc:rss:jnljfe:v1i1p3
    as

    Download full text from publisher

    File URL: http://rassweb.org/admin/pages/ResearchPapers/Paper-3-fe_1496409846.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    2. Mandelbrot, Benoit B, 1971. "When Can Price Be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models," The Review of Economics and Statistics, MIT Press, vol. 53(3), pages 225-236, August.
    3. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    4. Hsing Fang & Kon S. Lai & Michael Lai, 1994. "Fractal structure in currency futures price dynamics," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 14(2), pages 169-181, April.
    5. John Barkoulas & Walter C. Labys & Joseph Onochie, 1997. "Fractional dynamics in international commodity prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 17(2), pages 161-189, April.
    6. Greene, Myron T. & Fielitz, Bruce D., 1977. "Long-term dependence in common stock returns," Journal of Financial Economics, Elsevier, vol. 4(3), pages 339-349, May.
    7. Jae H. Kim, 2004. "Testing for the martingale hypothesis in Asian stock prices: evidence from a new joint variance ratio test," Econometric Society 2004 Australasian Meetings 98, Econometric Society.
    8. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    9. Billy P. Helms & Fred R. Kaen & Robert E. Rosenman, 1984. "Memory in commodity futures contracts," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 4(4), pages 559-567, December.
    10. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    11. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    12. Cheung, Yin-Wong & Lai, Kon S, 1993. "Do Gold Market Returns Have Long Memory?," The Financial Review, Eastern Finance Association, vol. 28(2), pages 181-202, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henryk Gurgul & Tomasz Wójtowicz, 2006. "Long-run properties of trading volume and volatility of equities listed in DJIA index," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 16(3-4), pages 29-56.
    2. Barkoulas, John T. & Baum, Christopher F., 1998. "Fractional dynamics in Japanese financial time series," Pacific-Basin Finance Journal, Elsevier, vol. 6(1-2), pages 115-124, May.
    3. Proelss, Juliane & Schweizer, Denis & Seiler, Volker, 2020. "The economic importance of rare earth elements volatility forecasts," International Review of Financial Analysis, Elsevier, vol. 71(C).
    4. Mynhardt, H. R. & Plastun, Alex & Makarenko, Inna, 2014. "Behavior of Financial Markets Efficiency During the Financial Market Crisis: 2007-2009," MPRA Paper 58942, University Library of Munich, Germany.
    5. Hiemstra, Craig & Jones, Jonathan D., 1997. "Another look at long memory in common stock returns," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 373-401, December.
    6. Yalama, Abdullah & Celik, Sibel, 2013. "Real or spurious long memory characteristics of volatility: Empirical evidence from an emerging market," Economic Modelling, Elsevier, vol. 30(C), pages 67-72.
    7. Christos Christodoulou-Volos & Fotios Siokis, 2006. "Long range dependence in stock market returns," Applied Financial Economics, Taylor & Francis Journals, vol. 16(18), pages 1331-1338.
    8. Malinda & Maya & Jo-Hui & Chen, 2022. "Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-6.
    9. Onali, Enrico & Goddard, John, 2011. "Are European equity markets efficient? New evidence from fractal analysis," International Review of Financial Analysis, Elsevier, vol. 20(2), pages 59-67, April.
    10. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    11. Anju Bala & Kapil Gupta, 2020. "Examining The Long Memory In Stock Returns And Liquidity In India," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 9(3), pages 25-43.
    12. Onali, Enrico & Goddard, John, 2009. "Unifractality and multifractality in the Italian stock market," International Review of Financial Analysis, Elsevier, vol. 18(4), pages 154-163, September.
    13. Assaf, Ata, 2016. "MENA stock market volatility persistence: Evidence before and after the financial crisis of 2008," Research in International Business and Finance, Elsevier, vol. 36(C), pages 222-240.
    14. Hiremath, Gourishankar S. & Kattuman, Paul, 2017. "Foreign portfolio flows and emerging stock market: Is the midnight bell ringing in India?," Research in International Business and Finance, Elsevier, vol. 42(C), pages 544-558.
    15. Ritesh Kumar Mishra & Sanjay Sehgal & N.R. Bhanumurthy, 2011. "A search for long‐range dependence and chaotic structure in Indian stock market," Review of Financial Economics, John Wiley & Sons, vol. 20(2), pages 96-104, May.
    16. Marco Corazza & A. G. Malliaris, 2005. "Multi-Fractality in Foreign Currency Markets," World Scientific Book Chapters, in: Economic Uncertainty, Instabilities And Asset Bubbles Selected Essays, chapter 11, pages 151-184, World Scientific Publishing Co. Pte. Ltd..
    17. González-Pla, Francisco & Lovreta, Lidija, 2019. "Persistence in firm’s asset and equity volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    18. Christian de Peretti, 2003. "Bilateral Bootstrap Tests for Long Memory: An Application to the Silver Market," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 187-212, October.
    19. Cornelis A. Los & Joanna M. Lipka, 2004. "Long-Term Dependence Characteristics of European Stock Indices," Finance 0409044, University Library of Munich, Germany.
    20. Goodness C. Aye & Mehmet Balcilar & Rangan Gupta & Nicholas Kilimani & Amandine Nakumuryango & Siobhan Redford, 2014. "Predicting BRICS stock returns using ARFIMA models," Applied Financial Economics, Taylor & Francis Journals, vol. 24(17), pages 1159-1166, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rss:jnljfe:v1i1p3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Danish Khalil (email available below). General contact details of provider: http://www.rassweb.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.