IDEAS home Printed from https://ideas.repec.org/a/rjr/romjef/v5y2008i3p30-50.html
   My bibliography  Save this article

Modelling Tourism Demand: A Comparative Study Between Artificial Neural Networks And The Box-Jenkins Methodology

Author

Listed:
  • Fernandez, Paula

    (Department of Economics and Management, Polytechnic Institute of Braganca (IPB), Portugal)

  • Teixeira, Joao

    (Department of Electrical Engineering, Polytechnic Institute of Bragança (IPB), Portugal)

  • Ferreira, Joao

    (Department of Management and Economics, University of Beira Interior (UBI), Portugal)

  • Azevedo, Susana G.

    (Department of Management and Economics, University of Beira Interior (UBI), Portugal)

Abstract

This study seeks to investigate and highlight the usefulness of the Artificial Neural Networks (ANN) methodology as an alternative to the Box-Jenkins methodology in analysing tourism demand. To this end, each of the above-mentioned methodologies is centred on the treatment, analysis and modelling of the tourism time series: “Nights Spent in Hotel Accommodation per Month”, recorded in the period from January 1987 to December 2006, since this is one of the variables that best expresses effective demand. The study was undertaken for the North and Centre regions of Portugal. The results showed that the model produced by using the ANN methodology presented satisfactory statistical and adjustment qualities, suggesting that it is suitable for modelling and forecasting the reference series, when compared with the model produced by using the Box?Jenkins methodology.

Suggested Citation

  • Fernandez, Paula & Teixeira, Joao & Ferreira, Joao & Azevedo, Susana G., 2008. "Modelling Tourism Demand: A Comparative Study Between Artificial Neural Networks And The Box-Jenkins Methodology," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 5(3), pages 30-50, Septembe2.
  • Handle: RePEc:rjr:romjef:v:5:y:2008:i:3:p:30-50
    as

    Download full text from publisher

    File URL: http://www.ipe.ro/rjef/rjef3_08/rjef3_08_2.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tim Hill & Marcus O'Connor & William Remus, 1996. "Neural Network Models for Time Series Forecasts," Management Science, INFORMS, vol. 42(7), pages 1082-1092, July.
    2. Witt, Stephen F. & Witt, Christine A., 1995. "Forecasting tourism demand: A review of empirical research," International Journal of Forecasting, Elsevier, vol. 11(3), pages 447-475, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcos Álvarez-Díaz & Manuel González-Gómez & María Soledad Otero-Giráldez, 2018. "Forecasting International Tourism Demand Using a Non-Linear Autoregressive Neural Network and Genetic Programming," Forecasting, MDPI, vol. 1(1), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
    2. Nuno Carlos LEITÃO & Muhammad SHAHBAZ, 2012. "Migration and Tourism Demand," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(567)), pages 39-48, February.
    3. Peter Fuleky & Carl S. Bonham & Qianxue Zhao, 2013. "Estimating Demand Elasticities in Non-Stationary Panels: The Case of Hawaii's Tourism Industry," Working Papers 201314, University of Hawaii at Manoa, Department of Economics.
    4. Zoran Vojinovic & Vojislav Kecman & Rainer Seidel, 2001. "A data mining approach to financial time series modelling and forecasting," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(4), pages 225-239, December.
    5. Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011. "Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange," International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816, July.
    6. Hsiao, Chiu-Ming & Zhang, Wei-Fang & Chiu, Chi-Chang & Huang, Jung-Chang & Huang, Yu-Ling, 2017. "The Enterprise Risk Management of Foreign Exchange Exposures: Evidence from Taiwanese Hospitality Industry," Asian Journal of Economics and Empirical Research, Asian Online Journal Publishing Group, vol. 4(1), pages 32-48.
    7. Guizzardi, Andrea & Mazzocchi, Mario, 2010. "Tourism demand for Italy and the business cycle," Tourism Management, Elsevier, vol. 31(3), pages 367-377.
    8. Lin, Tun & De Guzman, Franklin, 2007. "Tourism for pro-poor and sustainable growth: economic analysis of tourism projects," MPRA Paper 24994, University Library of Munich, Germany.
    9. Agiomirgianakis, George & Serenis, Dimitrios & Tsounis, Nicholas, 2017. "Effective timing of tourism policy: The case of Singapore," Economic Modelling, Elsevier, vol. 60(C), pages 29-38.
    10. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    11. Niematallah Elamin & Mototsugu Fukushige, 2016. "Forecasting extreme seasonal tourism demand," Discussion Papers in Economics and Business 16-23, Osaka University, Graduate School of Economics.
    12. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    13. Darboe, sarjo, 2024. "The Dynamic Impact of biodiversity on Tourism: empirical evidence from Gambia," MPRA Paper 120063, University Library of Munich, Germany.
    14. Oscar Claveria & Enric Monte & Salvador Torra, 2013. "“Tourism demand forecasting with different neural networks models”," IREA Working Papers 201321, University of Barcelona, Research Institute of Applied Economics, revised Nov 2013.
    15. Seetaram, Neelu, 2010. "Computing airfare elasticities or opening Pandora's box," Research in Transportation Economics, Elsevier, vol. 26(1), pages 27-36.
    16. Allison Zhou & Carl Bonham & Byron Gangnes, 2007. "Modeling the supply and demand for tourism: a fully identified VECM approach," Working Papers 200717, University of Hawaii at Manoa, Department of Economics.
    17. Andreou, Andreas S. & Zombanakis, George, 2003. "The Greek-Turkish Arms Race Using Artificial Neural Networks," MPRA Paper 78576, University Library of Munich, Germany, revised 14 Jul 2003.
    18. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
    19. Marcos Álvarez-Díaz & Manuel González-Gómez & María Soledad Otero-Giráldez, 2018. "Forecasting International Tourism Demand Using a Non-Linear Autoregressive Neural Network and Genetic Programming," Forecasting, MDPI, vol. 1(1), pages 1-17, September.
    20. Thanh-Lam Nguyen & Jui-Chan Huang & Chuang-Chi Chiu & Ming-Hung Shu & Wen-Ru Tsai, 2013. "Forecasting Model for the International Tourism Demand in Taiwan," Diversity, Technology, and Innovation for Operational Competitiveness: Proceedings of the 2013 International Conference on Technology Innovation and Industrial Management,, ToKnowPress.

    More about this item

    Keywords

    Artificial Neural Networks; ARIMA Models; Time Series Forecasting;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • L83 - Industrial Organization - - Industry Studies: Services - - - Sports; Gambling; Restaurants; Recreation; Tourism

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rjr:romjef:v:5:y:2008:i:3:p:30-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Corina Saman (email available below). General contact details of provider: https://edirc.repec.org/data/ipacaro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.