IDEAS home Printed from https://ideas.repec.org/a/ris/actuec/v80y2004i2p341-361.html
   My bibliography  Save this article

Le problème des données longitudinales incomplètes : une nouvelle approche

Author

Listed:
  • Paquet, Marie-France

    (Université d’Ottawa)

  • Bolduc, Denis

    (Université Laval)

Abstract

In this paper, we suggest to use a Gibbs sampler with data augmentation to estimate models based on incomplete longitudinal data which, in the extreme case where the sample is composed of independent cross-sections, corresponds to a situation that normally calls for pseudo-panel modeling. The idea suggested here can be applied in several contexts: static and dynamic models linear or nonlinear type, discrete choice models, models with endogenous regressors, etc. To present the suggested method, we apply it to a linear model with continuous dependent variable. For comparison purpose, we also use the conventional pseudo-panel approach which is based on averages computed on cohorts. In terms of efficiency, the technique suggested in this work gives better results than the conventional pseudo-panel technique. This conclusion remains valid for any proportion of missing observations in the sample. Dans ce travail, nous suggérons l’utilisation de l’échantillonnage de Gibbs combiné à l’augmentation des données pour estimer des modèles à données longitudinales incomplètes, qui dans le cas extrême où l’échantillon est composé de coupes transversales indépendantes, correspond au cas de modèle de type pseudo-panel. Cette idée peut être appliquée dans plusieurs contextes : modèles statiques ou dynamiques de type linéaires, non linéaires, de choix discrets, avec régresseurs endogènes, etc. Pour présenter la méthode proposée, nous l’appliquons dans le cas d’un modèle linéaire à variable dépendante continue. Comme point de comparaison, nous utilisons les estimations par l’approche conventionnelle dite de pseudo-panel basée sur des moyennes calculées sur des cohortes. La technique proposée dans ce travail donne des résultats supérieurs, en terme d’efficacité, à la technique conventionnelle. Cette conclusion demeure valide quelle que soit la proportion des observations manquantes.

Suggested Citation

  • Paquet, Marie-France & Bolduc, Denis, 2004. "Le problème des données longitudinales incomplètes : une nouvelle approche," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 341-361, Juin-Sept.
  • Handle: RePEc:ris:actuec:v:80:y:2004:i:2:p:341-361
    as

    Download full text from publisher

    File URL: http://id.erudit.org/iderudit/011390ar
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gordon, Stephen & Bélanger, Gilles, 1996. "Échantillonnage de Gibbs et autres applications économétriques des chaînes markoviennes," L'Actualité Economique, Société Canadienne de Science Economique, vol. 72(1), pages 27-49, mars.
    2. Verbeek, Marno & Nijman, Theo, 1992. "Can Cohort Data Be Treated as Genuine Panel Data?," Empirical Economics, Springer, vol. 17(1), pages 9-23.
    3. Gardes, Francois & Langlois, Simon & Richaudeau, Didier, 1996. "Cross-section versus time-series income elasticities of Canadian consumption," Economics Letters, Elsevier, vol. 51(2), pages 169-175, May.
    4. Paul Beaudry & David A. Green, 2000. "Cohort patterns in Canadian earnings: assessing the role of skill premia in inequality trends," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 33(4), pages 907-936, November.
    5. François Gardes & Christian Loisy, 1998. "La pauvreté selon les ménages : une évaluation subjective et indexée sur leur revenu," Économie et Statistique, Programme National Persée, vol. 308(1), pages 95-112.
    6. Baltagi, Badi H., 1995. "Editor's introduction Panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 1-4, July.
    7. Verbeek, Marno & Nijman, Theo, 1993. "Minimum MSE estimation of a regression model with fixed effects from a series of cross-sections," Journal of Econometrics, Elsevier, vol. 59(1-2), pages 125-136, September.
    8. Keisuke Hirano & Guido W. Imbens & Geert Ridder & Donald B. Rubin, 2001. "Combining Panel Data Sets with Attrition and Refreshment Samples," Econometrica, Econometric Society, vol. 69(6), pages 1645-1659, November.
    9. Alessie, Rob & Devereux, Michael P. & Weber, Guglielmo, 1997. "Intertemporal consumption, durables and liquidity constraints: A cohort analysis," European Economic Review, Elsevier, vol. 41(1), pages 37-59, January.
    10. Deaton, Angus, 1985. "Panel data from time series of cross-sections," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 109-126.
    11. Browning, Martin & Deaton, Angus & Irish, Margaret, 1985. "A Profitable Approach to Labor Supply and Commodity Demands over the Life-Cycle," Econometrica, Econometric Society, vol. 53(3), pages 503-543, May.
    12. Verbeek, M.J.C.M. & Nijman, T.E., 1992. "Can cohort data be treated as genuine panel data?," Other publications TiSEM d4eada8f-b91c-4fe7-a58c-7, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rumman Khan, 2018. "Assessing cohort aggregation to minimise bias in pseudo-panels," Discussion Papers 2018-01, University of Nottingham, CREDIT.
    2. Rumman Khan, 2021. "Assessing Sampling Error in Pseudo‐Panel Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(3), pages 742-769, June.
    3. Verbeek, Marno & Vella, Francis, 2005. "Estimating dynamic models from repeated cross-sections," Journal of Econometrics, Elsevier, vol. 127(1), pages 83-102, July.
    4. Xavier d'Haultfoeuille & Stefan Hoderlein & Yuya Sasaki, 2013. "Nonlinear difference-in-differences in repeated cross sections with continuous treatments," CeMMAP working papers CWP40/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Lavin, Felipe Vasquez & Bratti, Luna & Orrego, Sergio & Barrientos, Manuel, 2020. "Assessing the Use of Pseudo-panels to Estimate the Value of Statistical Life in Developing Countries," EfD Discussion Paper 20-20, Environment for Development, University of Gothenburg.
    6. Paul J. Devereux, 2007. "Small-sample bias in synthetic cohort models of labor supply," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 839-848.
    7. Dolores Collado, M., 1997. "Estimating dynamic models from time series of independent cross-sections," Journal of Econometrics, Elsevier, vol. 82(1), pages 37-62.
    8. Randolph Luca Bruno & Laura Magazzini & Marco Stampini, 2018. "The Joint Estimate of Singleton and Longitudinal Observations: a GMM Approach for Improved Efficiency," Working Papers 04/2018, University of Verona, Department of Economics.
    9. David Aristei & Luca Pieroni, 2010. "Habits, Complementarities and Heterogeneity in Alcohol and Tobacco Demand: A Multivariate Dynamic Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 428-457, August.
    10. Inkmann, Joachim & Klotz, Stefan & Pohlmeier, Winfried, 1998. "Growing into Work - Pseudo Panel Data Evidence on Labor Market Entrance in Germany," ZEW Discussion Papers 98-47, ZEW - Leibniz Centre for European Economic Research.
    11. Badi Baltagi & Seuck Song, 2006. "Unbalanced panel data: A survey," Statistical Papers, Springer, vol. 47(4), pages 493-523, October.
    12. Bernard, Jean-Thomas & Bolduc, Denis & Yameogo, Nadège-Désirée, 2011. "A pseudo-panel data model of household electricity demand," Resource and Energy Economics, Elsevier, vol. 33(1), pages 315-325, January.
    13. D. Lederman & W.F. Maloney & J. Messina, 2011. "The Fall of Wage Flexibility," World Bank Publications - Reports 23575, The World Bank Group.
    14. Evren Ceritoglu, 2017. "Disentangling Age and Cohorts Effects on Home-Ownership and Housing Wealth in Turkey," Working Papers 1706, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    15. Beatriz Muriel & Horacio Vera, 2015. "The Effects of Economic Growth on Earnings in Bolivia," Development Research Working Paper Series 08/2015, Institute for Advanced Development Studies.
    16. Yancy Vaillant & Esteban Lafuente & Manoj Chandra Bayon, 2019. "Early internationalization patterns and export market persistence: a pseudo-panel data analysis," Small Business Economics, Springer, vol. 53(3), pages 669-686, October.
    17. François Gardes, 1999. "L'apport de l'économétrie des panels et des pseudo-panels à l'analyse de la consommation," Économie et Statistique, Programme National Persée, vol. 324(1), pages 157-162.
    18. Tamvada, Jagannadha Pawan, 2010. "The Dynamics of Self-employment in a Developing Country: Evidence from India," MPRA Paper 20042, University Library of Munich, Germany.
    19. Hai‐Anh H. Dang & Peter F. Lanjouw, 2023. "Measuring Poverty Dynamics with Synthetic Panels Based on Repeated Cross Sections," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 599-622, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:actuec:v:80:y:2004:i:2:p:341-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Dostie (email available below). General contact details of provider: https://edirc.repec.org/data/scseeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.