IDEAS home Printed from https://ideas.repec.org/a/rge/journl/v9y2021i1p61-79.html
   My bibliography  Save this article

Medicion de Madurez en la Implementacion de Inteligencia de Negocios en PYMEs de TI(Measuring Business Intelligence Implementation Maturity in IT SMEs)

Author

Listed:
  • Maria Guadalupe Medina Barrera

    (Tecnologico Nacional de Mexico/Instituto Tecnologico de Apizaco Universidad Popular Autonoma del Estado de Puebla)

  • Argelia B. Urbina Najera

    (Universidad Popular Autonoma del Estado de Puebla)

Abstract

Esta investigacion se enfoco en la medicion de madurez en la implementacion de Inteligencia de Negocios (IN) en PYMEs de la industria de las Tecnologias de la Informacion (TI), donde se tomaron dos casos particulares. Para ello, se realizo una revision de la literatura para identificar los Modelos de Madurez en Inteligencia de Negocios (BIMM) propuestos para evaluar empresas pequenas y/o medianas, o bien con recursos limitados. Se aplico un instrumento que evalua 14 factores clave involucrados en las etapas de desarrollo de un proyecto IN y otro para estimar el nivel de madurez en la administracion de iniciativas de IN en las organizaciones, considerando 20 aspectos centrados en la calidad de la informacion y su analisis, gestion y almacenamiento de datos. Los hallazgos revelaron que la dimension analitica esta fortalecida en ambos casos, no obstante que la empresa A es mas debil en construccion y despliegue, calidad de la informacion, gestion de datos maestros y arquitectura del almacen de datos, mientras que la empresa B esta mejor clasificada en estas dimensiones; ademas el analisis y diseno es el area mas debil de la empresa B detectando lo inverso para la empresa A. Asi, las PYMEs evaluadas tienen niveles de madurez en los extremos de uno de los BIMM aplicados, y madurez invertida entre etapas de acuerdo al otro BIMM, por lo que se observan situaciones muy diferentes en la implementacion de BI en PYMEs del sector TI.

Suggested Citation

  • Maria Guadalupe Medina Barrera & Argelia B. Urbina Najera, 2021. "Medicion de Madurez en la Implementacion de Inteligencia de Negocios en PYMEs de TI(Measuring Business Intelligence Implementation Maturity in IT SMEs)," Revista Internacional de Gestión del Conocimiento y la Tecnología (GECONTEC), Revista Internacional de Gestión del Conocimiento y la Tecnología (GECONTEC), vol. 9(1), pages 61-79, May.
  • Handle: RePEc:rge:journl:v:9:y:2021:i:1:p:61-79
    DOI: 10.5281/zenodo.7103228
    as

    Download full text from publisher

    File URL: https://doi.org/10.5281/zenodo.7103228
    File Function: full text
    Download Restriction: no

    File URL: https://libkey.io/10.5281/zenodo.7103228?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jennifer E Gerow & Jason Bennett Thatcher & Varun Grover, 2015. "Six types of IT-business strategic alignment: an investigation of the constructs and their measurement," European Journal of Information Systems, Taylor & Francis Journals, vol. 24(5), pages 465-491, September.
    2. Frederik Marx & Felix Wortmann & Jörg Mayer, 2012. "A Maturity Model for Management Control Systems," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 4(4), pages 193-207, August.
    3. Gastaldi, Luca & Pietrosi, Astrid & Lessanibahri, Sina & Paparella, Marco & Scaccianoce, Antonio & Provenzale, Giuseppe & Corso, Mariano & Gridelli, Bruno, 2018. "Measuring the maturity of business intelligence in healthcare: Supporting the development of a roadmap toward precision medicine within ISMETT hospital," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 84-103.
    4. Brooks, Patti & El-Gayar, Omar & Sarnikar, Surendra, 2015. "A framework for developing a domain specific business intelligence maturity model: Application to healthcare," International Journal of Information Management, Elsevier, vol. 35(3), pages 337-345.
    5. Grossman, Robert L., 2018. "A framework for evaluating the analytic maturity of an organization," International Journal of Information Management, Elsevier, vol. 38(1), pages 45-51.
    6. Iris Hausladen & Alexander Haas, 2014. "A Joint Maturity Model Of Bi-Driven Supply Chains," Business Logistics in Modern Management, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, vol. 14, pages 69-76.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basile, Luigi Jesus & Carbonara, Nunzia & Pellegrino, Roberta & Panniello, Umberto, 2023. "Business intelligence in the healthcare industry: The utilization of a data-driven approach to support clinical decision making," Technovation, Elsevier, vol. 120(C).
    2. Gastaldi, Luca & Pietrosi, Astrid & Lessanibahri, Sina & Paparella, Marco & Scaccianoce, Antonio & Provenzale, Giuseppe & Corso, Mariano & Gridelli, Bruno, 2018. "Measuring the maturity of business intelligence in healthcare: Supporting the development of a roadmap toward precision medicine within ISMETT hospital," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 84-103.
    3. Rikhardsson, Pall & Yigitbasioglu, Ogan, 2018. "Business intelligence & analytics in management accounting research: Status and future focus," International Journal of Accounting Information Systems, Elsevier, vol. 29(C), pages 37-58.
    4. Tursunbayeva, Aizhan & Di Lauro, Stefano & Pagliari, Claudia, 2018. "People analytics—A scoping review of conceptual boundaries and value propositions," International Journal of Information Management, Elsevier, vol. 43(C), pages 224-247.
    5. Emeka Nkoro & Aham Kelvin Uko, 2019. "The Sources of Economic Growth in Nigeria: A Growth Accounting Approach," European Journal of Economics and Business Studies Articles, Revistia Research and Publishing, vol. 5, January -.
    6. Rafael, Lizarralde Dorronsoro & Jaione, Ganzarain Epelde & Cristina, López & Ibon, Serrano Lasa, 2020. "An Industry 4.0 maturity model for machine tool companies," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    7. Shaygan, Amir & Daim, Tugrul, 2023. "Technology management maturity assessment model in healthcare research centers," Technovation, Elsevier, vol. 120(C).
    8. Jaklič, Jurij & Grublješič, Tanja & Popovič, Aleš, 2018. "The role of compatibility in predicting business intelligence and analytics use intentions," International Journal of Information Management, Elsevier, vol. 43(C), pages 305-318.
    9. Thalita Laua Reis & Maria Augusta Siqueira Mathias & Otavio Jose Oliveira, 2017. "Maturity models: identifying the state-of-the-art and the scientific gaps from a bibliometric study," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 643-672, February.
    10. Nazarenko, Anastasia & Vishnevskiy, Konstantin & Meissner, Dirk & Daim, Tugrul, 2022. "Applying digital technologies in technology roadmapping to overcome individual biased assessments," Technovation, Elsevier, vol. 110(C).
    11. Xing, Fei & Peng, Guochao & Zhang, Bingqian & Li, Shuyang & Liang, Xinting, 2021. "Socio-technical barriers affecting large-scale deployment of AI-enabled wearable medical devices among the ageing population in China," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    12. Zhang, Hao & Daim, Tugrul & Zhang, Yunqiu (Peggy), 2021. "Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    13. Rajesh Chidananda Reddy & Biplab Bhattacharjee & Debasisha Mishra & Anandadeep Mandal, 2022. "A systematic literature review towards a conceptual framework for enablers and barriers of an enterprise data science strategy," Information Systems and e-Business Management, Springer, vol. 20(1), pages 223-255, March.
    14. Calvard, Thomas Stephen & Jeske, Debora, 2018. "Developing human resource data risk management in the age of big data," International Journal of Information Management, Elsevier, vol. 43(C), pages 159-164.
    15. Denicolai, Stefano & Previtali, Pietro, 2020. "Precision Medicine: Implications for value chains and business models in life sciences," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    16. Vincenzo Vignieri & Carmine Bianchi & Astrid Pietrosi & Giuseppe Provenzale, 2019. "Il contributo delle reti sanitarie "spontanee" al miglioramento degli outcome: opportunit? e sfide nella prospettiva della progettazione dei sistemi di programmazione e controllo," MECOSAN, FrancoAngeli Editore, vol. 2019(109), pages 83-104.

    More about this item

    Keywords

    Business Intelligence; Maturity Model; SMES; IT sector; Inteligencia de Negocios; Modelo de Madurez; PYMES; sector TI;
    All these keywords.

    JEL classification:

    • M1 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration
    • M15 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - IT Management
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rge:journl:v:9:y:2021:i:1:p:61-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Luis Camilo Ortigueira Sánchez (email available below). General contact details of provider: https://www.gecontec.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.