IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v166y2021ics004016252100041x.html
   My bibliography  Save this article

Socio-technical barriers affecting large-scale deployment of AI-enabled wearable medical devices among the ageing population in China

Author

Listed:
  • Xing, Fei
  • Peng, Guochao
  • Zhang, Bingqian
  • Li, Shuyang
  • Liang, Xinting

Abstract

In order to provide better health and caring services to its rapidly growing ageing population, China has turned to new digital innovations empowered by Internet of Things (IoT) and artificial intelligence (AI) technologies, e.g. wearable medical devices (WMDs). This paper reports on an exploratory study that investigated socio-technical barriers and challenges affecting large-scale deployment of AI-enabled WMDs amongst Chinese old people. Nine focus groups were done to collect in-depth insights and comprehensive viewpoints respectively from Chinese families, local device providers, and public healthcare organisations. The qualitative data collected was analysed by using a thematic analysis approach. The results showed a set of 16 crucial barriers related to diverse technological, managerial, clinical, financial, legal and personal aspects. amongst these, lack of collaboration between WMD providers and public health organizations was identified to be the most critical barrier. This challenge was triggered by a range of clinical, financial, legal, managerial, and technical reasons, and would substantially prevent large-scale deployment and usage of AI-enabled wearable medical devices in the Chinese context

Suggested Citation

  • Xing, Fei & Peng, Guochao & Zhang, Bingqian & Li, Shuyang & Liang, Xinting, 2021. "Socio-technical barriers affecting large-scale deployment of AI-enabled wearable medical devices among the ageing population in China," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:tefoso:v:166:y:2021:i:c:s004016252100041x
    DOI: 10.1016/j.techfore.2021.120609
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004016252100041X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2021.120609?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gastaldi, Luca & Pietrosi, Astrid & Lessanibahri, Sina & Paparella, Marco & Scaccianoce, Antonio & Provenzale, Giuseppe & Corso, Mariano & Gridelli, Bruno, 2018. "Measuring the maturity of business intelligence in healthcare: Supporting the development of a roadmap toward precision medicine within ISMETT hospital," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 84-103.
    2. Shareef, Mahmud Akhter & Kumar, Vinod & Dwivedi, Yogesh K. & Kumar, Uma & Akram, Muhammad Shakaib & Raman, Ramakrishnan, 2021. "A new health care system enabled by machine intelligence: Elderly people's trust or losing self control," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    3. Papa, Armando & Mital, Monika & Pisano, Paola & Del Giudice, Manlio, 2020. "E-health and wellbeing monitoring using smart healthcare devices: An empirical investigation," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingqian Zhang & Guochao Peng & Caihua Liu & Zuopeng Justin Zhang & Sajjad M. Jasimuddin, 2022. "Adaptation behaviour in using one-stop smart governance apps: an exploratory study between digital immigrants and digital natives," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 1971-1991, December.
    2. Haefner, Naomi & Parida, Vinit & Gassmann, Oliver & Wincent, Joakim, 2023. "Implementing and scaling artificial intelligence: A review, framework, and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    3. Zhang, Yaqiong & Wang, Shifu, 2023. "The influence of anthropomorphic appearance of artificial intelligence products on consumer behavior and brand evaluation under different product types," Journal of Retailing and Consumer Services, Elsevier, vol. 74(C).
    4. Roppelt, Julia Stefanie & Kanbach, Dominik K. & Kraus, Sascha, 2024. "Artificial intelligence in healthcare institutions: A systematic literature review on influencing factors," Technology in Society, Elsevier, vol. 76(C).
    5. Pandyaswargo, Andante Hadi & Siregar, Tifani Husna & Onoda, Hiroshi, 2023. "Exploring Japan’s older adults mobility challenges and the potential role of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    6. Sudhanshu Joshi & Manu Sharma & Rashmi Prava Das & Joanna Rosak-Szyrocka & Justyna Żywiołek & Kamalakanta Muduli & Mukesh Prasad, 2022. "Modeling Conceptual Framework for Implementing Barriers of AI in Public Healthcare for Improving Operational Excellence: Experiences from Developing Countries," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    7. Mariani, Marcello M. & Machado, Isa & Nambisan, Satish, 2023. "Types of innovation and artificial intelligence: A systematic quantitative literature review and research agenda," Journal of Business Research, Elsevier, vol. 155(PB).
    8. Cenamor, Javier, 2022. "Use of health self-management platform features: The case of a specialist ehealth app," Technological Forecasting and Social Change, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huarng, Kun-Huang & Yu, Tiffany Hui-Kuang & Lee, Cheng fang, 2022. "Adoption model of healthcare wearable devices," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    2. Arfi, Wissal Ben & Nasr, Imed Ben & Kondrateva, Galina & Hikkerova, Lubica, 2021. "The role of trust in intention to use the IoT in eHealth: Application of the modified UTAUT in a consumer context," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    3. Basile, Luigi Jesus & Carbonara, Nunzia & Pellegrino, Roberta & Panniello, Umberto, 2023. "Business intelligence in the healthcare industry: The utilization of a data-driven approach to support clinical decision making," Technovation, Elsevier, vol. 120(C).
    4. Zhang, Wenqing & Liu, Liangliang, 2022. "Exploring non-users' intention to adopt ride-sharing services: Taking into account increased risks due to the COVID-19 pandemic among other factors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 180-195.
    5. Surajit Bag & Shivam Gupta & Ajay Kumar & Uthayasankar Sivarajah, 2021. "An integrated artificial intelligence framework for knowledge creation and B2B marketing rational decision making for improving firm performance," Post-Print hal-03188195, HAL.
    6. Brem, Alexander & Viardot, Eric & Nylund, Petra A., 2021. "Implications of the coronavirus (COVID-19) outbreak for innovation: Which technologies will improve our lives?," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    7. Basile, L.J. & Carbonara, N. & Panniello, U. & Pellegrino, R., 2024. "The role of big data analytics in improving the quality of healthcare services in the Italian context: The mediating role of risk management," Technovation, Elsevier, vol. 133(C).
    8. Secundo, Giustina & Riad Shams, S.M. & Nucci, Francesco, 2021. "Digital technologies and collective intelligence for healthcare ecosystem: Optimizing Internet of Things adoption for pandemic management," Journal of Business Research, Elsevier, vol. 131(C), pages 563-572.
    9. Henkens, Bieke & Verleye, Katrien & Larivière, Bart, 2021. "The smarter, the better?! Customer well-being, engagement, and perceptions in smart service systems," International Journal of Research in Marketing, Elsevier, vol. 38(2), pages 425-447.
    10. Suen, Hung-Yue & Hung, Kuo-En, 2024. "Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    11. Văidean, Viorela Ligia & Achim, Monica Violeta, 2022. "When more is less: Do information and communication technologies (ICTs) improve health outcomes? An empirical investigation in a non-linear framework," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    12. Rafael, Lizarralde Dorronsoro & Jaione, Ganzarain Epelde & Cristina, López & Ibon, Serrano Lasa, 2020. "An Industry 4.0 maturity model for machine tool companies," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    13. Pham, Phuoc & Zhang, Huilan & Gao, Wenlian & Zhu, Xiaowei, 2024. "Determinants and performance outcomes of artificial intelligence adoption: Evidence from U.S. Hospitals," Journal of Business Research, Elsevier, vol. 172(C).
    14. Nguyen Bac Nguyen & João Carlos Rosmaninho Menezes, 2021. "The thirty-year evolution of customer-to-customer interaction research: a systematic literature review and research implications," Service Business, Springer;Pan-Pacific Business Association, vol. 15(3), pages 391-444, September.
    15. Belfiore, Alessandra & Cuccurullo, Corrado & Aria, Massimo, 2022. "IoT in healthcare: A scientometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    16. Cenamor, Javier, 2022. "Use of health self-management platform features: The case of a specialist ehealth app," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    17. Del Giudice, Manlio & Scuotto, Veronica & Papa, Armando & Singh, Sanjay Kumar, 2023. "The ‘bright’ side of innovation management for international new ventures," Technovation, Elsevier, vol. 125(C).
    18. Aw, Eugene Cheng-Xi & Tan, Garry Wei-Han & Cham, Tat-Huei & Raman, Ramakrishnan & Ooi, Keng-Boon, 2022. "Alexa, what's on my shopping list? Transforming customer experience with digital voice assistants," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    19. Ávila-Robinson, Alfonso & Islam, Nazrul & Sengoku, Shintaro, 2022. "Exploring the knowledge base of innovation research: Towards an emerging innovation model," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    20. Chauhan, Ankur & Jakhar, Suresh Kumar & Jabbour, Charbel Jose Chiappetta, 2022. "Implications for sustainable healthcare operations in embracing telemedicine services during a pandemic," Technological Forecasting and Social Change, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:166:y:2021:i:c:s004016252100041x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.