IDEAS home Printed from https://ideas.repec.org/a/red/issued/21-53.html
   My bibliography  Save this article

Complementarity and Macroeconomic Uncertainty

Author

Listed:
  • Tyler Atkinson

    (Federal Reserve Bank of Dallas)

  • Michael Plante

    (Federal Reserve Bank of Dallas)

  • Alexander Richter

    (Federal Reserve Bank of Dallas)

  • Nathaniel Throckmorton

    (University of William and Mary)

Abstract

Macroeconomic uncertainty regularly fluctuates in the data. Theory suggests complementarity between capital and labor inputs in production can generate time-varying endogenous uncertainty because the concavity in the production function influences how output responds to productivity shocks in different states of the economy. This paper examines whether complementarity is a quantitatively significant source of time-varying endogenous uncertainty by estimating a nonlinear real business cycle model with a constant elasticity of substitution production function and exogenous volatility shocks. When matching labor share and uncertainty moments, we find at most 16% of the volatility of uncertainty is endogenous. An estimated model without exogenous volatility shocks can endogenously generate all of the empirical variation in uncertainty, but only at the expense of significantly overstating the volatility of the labor share. (Copyright: Elsevier)

Suggested Citation

  • Tyler Atkinson & Michael Plante & Alexander Richter & Nathaniel Throckmorton, 2022. "Complementarity and Macroeconomic Uncertainty," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 44, pages 225-243, April.
  • Handle: RePEc:red:issued:21-53
    DOI: 10.1016/j.red.2021.03.003
    as

    Download full text from publisher

    File URL: https://dx.doi.org/10.1016/j.red.2021.03.003
    Download Restriction: Access to full texts is restricted to ScienceDirect subscribers and institutional members. See https://www.sciencedirect.com/ for details.

    File URL: https://libkey.io/10.1016/j.red.2021.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Miguel A León-Ledesma & Mathan Satchi, 2019. "Appropriate Technology and Balanced Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(2), pages 807-835.
    2. Zhiguo He & Arvind Krishnamurthy, 2019. "A Macroeconomic Framework for Quantifying Systemic Risk," American Economic Journal: Macroeconomics, American Economic Association, vol. 11(4), pages 1-37, October.
    3. Haroon Mumtaz & Francesco Zanetti, 2013. "The Impact of the Volatility of Monetary Policy Shocks," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(4), pages 535-558, June.
    4. Cosmin Ilut & Matthias Kehrig & Martin Schneider, 2018. "Slow to Hire, Quick to Fire: Employment Dynamics with Asymmetric Responses to News," Journal of Political Economy, University of Chicago Press, vol. 126(5), pages 2011-2071.
    5. Jesus Fernandez-Villaverde & Pablo Guerron-Quintana & Juan F. Rubio-Ramirez & Martin Uribe, 2011. "Risk Matters: The Real Effects of Volatility Shocks," American Economic Review, American Economic Association, vol. 101(6), pages 2530-2561, October.
    6. Saijo, Hikaru, 2017. "The uncertainty multiplier and business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 1-25.
    7. Cristiano Cantore & Miguel León-Ledesma & Peter McAdam & Alpo Willman, 2014. "Shocking Stuff: Technology, Hours, And Factor Substitution," Journal of the European Economic Association, European Economic Association, vol. 12(1), pages 108-128, February.
    8. Francois Gourio, 2013. "Financial Distress and Endogenous Uncertainty," 2013 Meeting Papers 108, Society for Economic Dynamics.
    9. Ezra Oberfield & Devesh Raval, 2021. "Micro Data and Macro Technology," Econometrica, Econometric Society, vol. 89(2), pages 703-732, March.
    10. Markku Lanne & Henri Nyberg, 2016. "Generalized Forecast Error Variance Decomposition for Linear and Nonlinear Multivariate Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(4), pages 595-603, August.
    11. Karen Kopecky & Richard Suen, 2010. "Finite State Markov-chain Approximations to Highly Persistent Processes," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 13(3), pages 701-714, July.
    12. Raj Chetty & Adam Guren & Day Manoli & Andrea Weber, 2013. "Does Indivisible Labor Explain the Difference between Micro and Macro Elasticities? A Meta-Analysis of Extensive Margin Elasticities," NBER Macroeconomics Annual, University of Chicago Press, vol. 27(1), pages 1-56.
    13. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    14. Jesús Fernández-Villaverde & Pablo Guerrón-Quintana & Keith Kuester & Juan Rubio-Ramírez, 2015. "Fiscal Volatility Shocks and Economic Activity," American Economic Review, American Economic Association, vol. 105(11), pages 3352-3384, November.
    15. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    16. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    17. Alexander Richter & Nathaniel Throckmorton & Todd Walker, 2014. "Accuracy, Speed and Robustness of Policy Function Iteration," Computational Economics, Springer;Society for Computational Economics, vol. 44(4), pages 445-476, December.
    18. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    19. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    20. Straub, Ludwig & Ulbricht, Robert, 2015. "Endogenous Uncertainty and Credit Crunches," TSE Working Papers 15-604, Toulouse School of Economics (TSE), revised Dec 2017.
    21. Fabio Canova & David Lopez-Salido & Claudio Michelacci, 2010. "The effects of technology shocks on hours and output: a robustness analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 755-773.
    22. Coleman, Wilbur John, II, 1991. "Equilibrium in a Production Economy with an Income Tax," Econometrica, Econometric Society, vol. 59(4), pages 1091-1104, July.
    23. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    24. Rainer Klump & Peter McAdam & Alpo Willman, 2012. "The Normalized Ces Production Function: Theory And Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 26(5), pages 769-799, December.
    25. Cristina Arellano & Yan Bai & Patrick J. Kehoe, 2019. "Financial Frictions and Fluctuations in Volatility," Journal of Political Economy, University of Chicago Press, vol. 127(5), pages 2049-2103.
    26. Born, Benjamin & Pfeifer, Johannes, 2014. "Policy risk and the business cycle," Journal of Monetary Economics, Elsevier, vol. 68(C), pages 68-85.
    27. Sebastian Gechert & Tomas Havranek & Zuzana Irsova & Dominika Kolcunova, 2019. "Death to the Cobb-Douglas Production Function," Working Papers IES 2019/26, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2019.
    28. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    29. Eggertsson, Gauti B. & Singh, Sanjay R., 2019. "Log-linear approximation versus an exact solution at the ZLB in the New Keynesian model," Journal of Economic Dynamics and Control, Elsevier, vol. 105(C), pages 21-43.
    30. Markus K. Brunnermeier & Yuliy Sannikov, 2014. "A Macroeconomic Model with a Financial Sector," American Economic Review, American Economic Association, vol. 104(2), pages 379-421, February.
    31. Miguel A. León-Ledesma & Peter McAdam & Alpo Willman, 2010. "Identifying the Elasticity of Substitution with Biased Technical Change," American Economic Review, American Economic Association, vol. 100(4), pages 1330-1357, September.
    32. Francis, Neville & Ramey, Valerie A., 2005. "Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1379-1399, November.
    33. Lawrence J. Christiano & Michele Boldrin & Jonas D. M. Fisher, 2001. "Habit Persistence, Asset Returns, and the Business Cycle," American Economic Review, American Economic Association, vol. 91(1), pages 149-166, March.
    34. Straub, Ludwig & Ulbricht, Robert, 2019. "Endogenous second moments: A unified approach to fluctuations in risk, dispersion, and uncertainty," Journal of Economic Theory, Elsevier, vol. 183(C), pages 625-660.
    35. Ruge-Murcia, Francisco, 2012. "Estimating nonlinear DSGE models by the simulated method of moments: With an application to business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 36(6), pages 914-938.
    36. Rotemberg, Julio J, 1982. "Sticky Prices in the United States," Journal of Political Economy, University of Chicago Press, vol. 90(6), pages 1187-1211, December.
    37. Cantore, Cristiano & Levine, Paul & Pearlman, Joseph & Yang, Bo, 2015. "CES technology and business cycle fluctuations," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 133-151.
    38. Van Nieuwerburgh, Stijn & Veldkamp, Laura, 2006. "Learning asymmetries in real business cycles," Journal of Monetary Economics, Elsevier, vol. 53(4), pages 753-772, May.
    39. Enrique G. Mendoza, 2010. "Sudden Stops, Financial Crises, and Leverage," American Economic Review, American Economic Association, vol. 100(5), pages 1941-1966, December.
    40. Joachim Hubmer, 2019. "The Race Between Preferences and Technology," 2019 Meeting Papers 1430, Society for Economic Dynamics.
    41. Ireland, Peter N., 1997. "A small, structural, quarterly model for monetary policy evaluation," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 47(1), pages 83-108, December.
    42. Leduc, Sylvain & Liu, Zheng, 2016. "Uncertainty shocks are aggregate demand shocks," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 20-35.
    43. repec:mcb:jmoncb:v:45:y:2013:i::p:535-558 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesus Fernandez-Villaverde & Pablo Guerron-Quintana, 2020. "Uncertainty Shocks and Business Cycle Research," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 37, pages 118-166, August.
    2. Joshua Bernstein & Michael D. Plante & Alexander W. Richter & Nathaniel A. Throckmorton, 2021. "Countercyclical Fluctuations in Uncertainty are Endogenous," Working Papers 2109, Federal Reserve Bank of Dallas.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua Bernstein & Michael D. Plante & Alexander W. Richter & Nathaniel A. Throckmorton, 2021. "Countercyclical Fluctuations in Uncertainty are Endogenous," Working Papers 2109, Federal Reserve Bank of Dallas.
    2. Alexander W. Richter & Nathaniel A. Throckmorton, 2017. "A New Way to Quantify the Effect of Uncertainty," Working Papers 1705, Federal Reserve Bank of Dallas.
    3. Joshua Bernstein & Alexander W. Richter & Nathaniel A. Throckmorton, 2021. "Nonlinear Search and Matching Explained," Working Papers 2106, Federal Reserve Bank of Dallas.
    4. Michael Plante & Alexander W. Richter & Nathaniel A. Throckmorton, 2018. "The Zero Lower Bound and Endogenous Uncertainty," Economic Journal, Royal Economic Society, vol. 128(611), pages 1730-1757, June.
    5. Mumtaz, Haroon & Theodoridis, Konstantinos, 2020. "Dynamic effects of monetary policy shocks on macroeconomic volatility," Journal of Monetary Economics, Elsevier, vol. 114(C), pages 262-282.
    6. Valeriu Nalban & Andra Smadu, 2022. "Uncertainty shocks and the monetary-macroprudential policy mix," Working Papers 739, DNB.
    7. Bernstein, Joshua & Richter, Alexander W. & Throckmorton, Nathaniel A., 2021. "Cyclical net entry and exit," European Economic Review, Elsevier, vol. 136(C).
    8. Nikolaos Charalampidis, 2020. "The U.S. Labor Income Share And Automation Shocks," Economic Inquiry, Western Economic Association International, vol. 58(1), pages 294-318, January.
    9. Hikaru Saijo & Cosmin Ilut, 2015. "Learning, Confidence, and Business Cycles," 2015 Meeting Papers 917, Society for Economic Dynamics.
    10. Minchul Shin & Molin Zhong, 2020. "A New Approach to Identifying the Real Effects of Uncertainty Shocks," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 367-379, April.
    11. Jesus Fernandez-Villaverde & Pablo Guerron-Quintana, 2020. "Uncertainty Shocks and Business Cycle Research," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 37, pages 118-166, August.
    12. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    13. Kamalyan, Hayk & Davtyan, Vahagn, 2022. "Exchange Rate Uncertainty and Business Cycle Fluctuations," MPRA Paper 113443, University Library of Munich, Germany.
    14. Mumtaz, Haroon & Theodoridis, Konstantinos, 2020. "Dynamic effects of monetary policy shocks on macroeconomic volatility," Journal of Monetary Economics, Elsevier, vol. 114(C), pages 262-282.
    15. Bachmann, Rüdiger & Born, Benjamin & Elstner, Steffen & Grimme, Christian, 2019. "Time-varying business volatility and the price setting of firms," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 82-99.
    16. Lastauskas, Povilas & Nguyen, Anh Dinh Minh, 2023. "Global impacts of US monetary policy uncertainty shocks," Journal of International Economics, Elsevier, vol. 145(C).
    17. Atkinson, Tyler & Richter, Alexander W. & Throckmorton, Nathaniel A., 2020. "The zero lower bound and estimation accuracy," Journal of Monetary Economics, Elsevier, vol. 115(C), pages 249-264.
    18. Saijo, Hikaru, 2017. "The uncertainty multiplier and business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 1-25.
    19. Anthony M. Diercks & Alex Hsu & Andrea Tamoni, 2020. "When it Rains it Pours: Cascading Uncertainty Shocks," Finance and Economics Discussion Series 2020-064, Board of Governors of the Federal Reserve System (U.S.).
    20. Idriss Fontaine, 2021. "Uncertainty and Labour Force Participation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(2), pages 437-471, April.

    More about this item

    Keywords

    State-Dependence; Stochastic Volatility; CES Production; Endogenous Uncertainty;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:red:issued:21-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christian Zimmermann (email available below). General contact details of provider: https://edirc.repec.org/data/sedddea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.