IDEAS home Printed from https://ideas.repec.org/a/psc/journl/v11y2019i1p47-71.html
   My bibliography  Save this article

Bayesian comparison of bivariate Copula-GARCH and MGARCH models

Author

Listed:
  • Justyna Mokrzycka

    (Warsaw School of Economics)

Abstract

The aim of the study is to formally compare the explanatory power of Copula-GARCH and MGARCH models. The models are estimated for logarithmic daily rates of return of two exchange rates: EUR/PLN, USD/PLN and stock market indices: SP500, BUX. The analysis is performed within the Bayesian framework. The posterior model probabilities point to AR(1)-tSBEKK(1,1) for the exchange rates and VAR(1)-tCopula-GARCH(1,1) for the stock market indices, as the superior specifications. If the marginal sampling distributions are different in terms of tail thickness, the Copula-GARCH models have higher explanatory power than the MGARCH models.

Suggested Citation

  • Justyna Mokrzycka, 2019. "Bayesian comparison of bivariate Copula-GARCH and MGARCH models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 11(1), pages 47-71, March.
  • Handle: RePEc:psc:journl:v:11:y:2019:i:1:p:47-71
    as

    Download full text from publisher

    File URL: http://cejeme.org/publishedarticles/2019-11-03-636898938647656250-9288.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Jacek Osiewalski & Krzysztof Osiewalski, 2016. "Hybrid MSV-MGARCH Models – General Remarks and the GMSF-SBEKK Specification," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(4), pages 241-271, December.
    3. Jacek Osiewalski & Anna Pajor, 2009. "Bayesian Analysis for Hybrid MSF-SBEKK Models of Multivariate Volatility," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 1(2), pages 179-202, November.
    4. Osiewalski, Jacek & Pipien, Mateusz, 2004. "Bayesian comparison of bivariate ARCH-type models for the main exchange rates in Poland," Journal of Econometrics, Elsevier, vol. 123(2), pages 371-391, December.
    5. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    6. Gregor Weiß, 2013. "Copula-GARCH versus dynamic conditional correlation: an empirical study on VaR and ES forecasting accuracy," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 179-202, August.
    7. Dias, Alexandra & Embrechts, Paul, 2010. "Modeling exchange rate dependence dynamics at different time horizons," Journal of International Money and Finance, Elsevier, vol. 29(8), pages 1687-1705, December.
    8. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    9. Jacek Osiewalski & Anna Pajor & Mateusz Pipien, 2006. "Bayesian Analysis of Main Bivariate GARCH and SV Models for PLN/USD and PLN/DEM (1966-2001)," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 7, pages 25-36.
    10. Anna Pajor & Jacek Osiewalski, 2013. "A Note on Lenk’s Correction of the Harmonic Mean Estimator," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 5(4), pages 271-275, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoang Nguyen & M Concepción Ausín & Pedro Galeano, 2019. "Parallel Bayesian Inference for High-Dimensional Dynamic Factor Copulas," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 118-151.
    2. Tomasz Woźniak, 2018. "Granger-causal analysis of GARCH models: A Bayesian approach," Econometric Reviews, Taylor & Francis Journals, vol. 37(4), pages 325-346, April.
    3. Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
    4. Siburg, Karl Friedrich & Stoimenov, Pavel & Weiß, Gregor N.F., 2015. "Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 129-140.
    5. Woźniak, Tomasz, 2015. "Testing causality between two vectors in multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 876-894.
    6. Jacek Osiewalski & Krzysztof Osiewalski, 2016. "Hybrid MSV-MGARCH Models – General Remarks and the GMSF-SBEKK Specification," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(4), pages 241-271, December.
    7. So, Mike K.P. & Yeung, Cherry Y.T., 2014. "Vine-copula GARCH model with dynamic conditional dependence," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 655-671.
    8. Acar, Elif F. & Czado, Claudia & Lysy, Martin, 2019. "Flexible dynamic vine copula models for multivariate time series data," Econometrics and Statistics, Elsevier, vol. 12(C), pages 181-197.
    9. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    10. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2021. "The impact of Euro through time: Exchange rate dynamics under different regimes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1375-1408, January.
    11. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
    12. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    13. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    14. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," SIRE Discussion Papers 2015-78, Scottish Institute for Research in Economics (SIRE).
    15. Aboura, Sofiane & Chevallier, Julien, 2015. "Volatility returns with vengeance: Financial markets vs. commodities," Research in International Business and Finance, Elsevier, vol. 33(C), pages 334-354.
    16. Tim Bollerslev & Ray Y. Chou & Narayanan Jayaraman & Kenneth F. Kroner - L, 1991. "es modéles ARCH en finance : un point sur la théorie et les résultats empiriques," Annals of Economics and Statistics, GENES, issue 24, pages 1-59.
    17. Mateusz Pipień, 2013. "Orthogonal Transformation of Coordinates in Copula M-GARCH Models – Bayesian analysis for WIG20 spot and futures returns," NBP Working Papers 151, Narodowy Bank Polski.
    18. Darolles, Serge & Francq, Christian & Laurent, Sébastien, 2018. "Asymptotics of Cholesky GARCH models and time-varying conditional betas," Journal of Econometrics, Elsevier, vol. 204(2), pages 223-247.
    19. Jacek Osiewalski & Mateusz Pipień, 2005. "Bayesian Analysis of Dynamic Conditional Correlation Using Bivariate GARCH Models," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Władysław Milo & Piotr Wdowiński (ed.), Acta Universitatis Lodziensis. Folia Oeconomica nr 192/2005 - Issues in Modeling, Forecasting and Decision-Making in Financial Markets, edition 1, volume 127, chapter 13, pages 213-227, University of Lodz.
    20. Chen, Yi-Hsuan & Tu, Anthony H., 2013. "Estimating hedged portfolio value-at-risk using the conditional copula: An illustration of model risk," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 514-528.

    More about this item

    Keywords

    Bayesian model comparison; Copula-GARCH model; Multivariate GARCH model; Monte Carlo Importance Sampling;
    All these keywords.

    JEL classification:

    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:psc:journl:v:11:y:2019:i:1:p:47-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Damian Jelito (email available below). General contact details of provider: http://cejeme.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.