IDEAS home Printed from https://ideas.repec.org/a/prs/ecstat/estat_0336-1454_2006_num_395_1_7132.html
   My bibliography  Save this article

Un nouvel indicateur synthétique prenant en compte la dynamique des réponses individuelles à l'enquête Industrie

Author

Listed:
  • François Hild

Abstract

[fre] L'interprétation des enquêtes de conjoncture est très souvent fondée sur l'évolution de soldes d'opinion, qui constituent le résumé le plus largement utilisé de l'information recueillie auprès des entreprises. Cet article suggère la construction d'indicateurs différents, qui prennent en compte la modalité de réponse « stable » ou « normal » d'une part, et tiennent compte de la dynamique des réponses individuelles d'une enquête à l'autre d'autre part. Ainsi, à la fin d'un mois on s'intéresse non seulement à la réponse d'une entreprise lors de l'enquête correspondante, mais aussi à sa réponse à l'enquête précédente. On en déduit un classement des entreprises en neuf catégories selon leurs réponses aux deux enquêtes : Hausse-Hausse, Hausse-Stable, Hausse-Baisse, Stable-Hausse' On s'intéresse aux pourcentages d'entreprises qui changent de réponses d'une enquête à l'autre. Ces pourcentages pourraient signaler précocement certains retournements de conjoncture et constituer des indicateurs légèrement avancés. En particulier, on montre que, pour certaines questions, le pourcentage de réponses Stable-Baisse ou Stable-Hausse se retourne effectivement à plusieurs reprises plus tôt que le solde d'opinion correspondant. On construit ensuite un indicateur fondé sur ce type de pourcentages, qui pourrait compléter ceux dont on dispose déjà pour prévoir le taux de croissance trimestriel de la production manufacturière à l'horizon de deux trimestres. [spa] Un nuevo indicador sintético que considere la dinámica de las respuestas individuales en la encuesta Industria. La interpretación de las encuestas de coyuntura se fundamenta a menudo en la evolución de saldos de opinión, que constituyen el resumen de la información recogida ante las empresas más ampliamente utilizado. Este artículo sugiere establecer indicadores diferentes que tomen en consideración la modalidad de respuesta «estable» o «normal» por un lado y, por otro, consideren la dinámica de las respuestas individuales de una encuesta a la otra. Así, al fi nal del mes, interesa no sólamente la respuesta de una empresa durante la encuesta correspondiente sino también su respuesta a la encuesta anterior. Se ha deducido una clasifi cación de las empresas en nueve categorías según sus respuestas a las encuestas: Alta-Alta, Alta-Estable, Alta-Baja, Estable-Alta... Resultando interesante los porcentajes de empresas que cambian de respuesta de una encuesta a otra. Estos porcentajes podrían señalar precozmente ciertas infl exiones de coyuntura y constituir indicadores ligeramente avanzados. En particular, se muestra que para ciertas cuestiones el porcentaje de respuestas Estable-Baja o Estable-Alta cambia, efectivamente en varias ocasiones, antes que el saldo de opinión correspondiente. A continuación se construye un indicador basado en este tipo de porcentajes, que podría completar aquellos de los que ya disponemos para prever la tasa de crecimiento trimestral de la producción manufacturera en el horizonte de dos trimestres. [eng] A New Synthetic Indicator Taking into Account the Dynamics of Individual Responses to the French Industry Survey. The interpretation of tendency surveys is very often based on changes in balances of opinion, which constitute the most commonly used summaries of the responses of companies. This article suggests the construction of different indicators, which, on the one hand, take into account "stable” or "normal” response conditions, and on the other hand also take into account the dynamics of individual responses from one survey to the next. The values of these indicators at the end of each month take into account not only companies’ responses to the present survey but also their responses to the previous survey. The responses of companies during two consecutive surveys are classifi ed into nine categories: Increase-Increase, Increase-Unchanged, Increase-Decrease, Unchanged-Increase, etc. We focus on the percentages of companies that change their responses from one survey to another. These percentages could give early signals of certain changes in the short-term economic situation and represent slightly advanced indicators. In particular, the article shows that, for certain questions, the percentages of Unchanged-Decrease and Unchanged-Increase responses do indeed display a number of tendencies earlier than the corresponding balances of opinion. It is, then, possible to construct an indicator based on these percentages, which could complete those which already exist for forecasting the quarterly growth rate of manufacturing production over two quarters. [ger] Ein neuer synthetischer Indikator zur Berücksichtigung der individuellen Antworten bei der Erhebung "Industrie“. Die Interpretation der Konjunkturerhebungen basiert sehr häufi g auf der Entwicklung der Meinungssalden, die weitestgehend als Zusammenfassung der bei den Unternehmen erhaltenen Informationen dienen. In diesem Artikel wird der Aufbau unterschiedlicher Indikatoren vorgeschlagen, die einerseits die Modalität "stabile“ oder •normale“ Antwort und andererseits die Dynamik der individuellen Antworten von einer Erhebung zur anderen berücksichtigen. Am Ende eines Monats gilt mithin das Interesse nicht nur der Antwort eines Unternehmens auf die entsprechende Umfrage, sondern auch seiner Antwort auf die vorausgegangene Umfrage. Auf dieser Grundlage werden die Unternehmen dann in neun Kategorien entsprechend ihren Antworten auf die zwei Umfragen eingeteilt: Zunahme/ Zunahme, Zunahme/ Stabil, Zunahme/ Abnahme, Stabil/ Zunahme... Interessant sind die Prozentsätze der Unternehmen, die bei den zwei Umfragen eine unterschiedliche Antwort abgegeben haben. Diese Prozentsätze könnten vorzeitig auf bestimmte Konjunkturumschwünge hinweisen und gewissermaßen als Frühindikatoren dienen. Gezeigt wird insbesondere, dass sich bei bestimmten Fragen der Prozentsatz der Antworten Stabil/ Abnahme oder Stabil/ Zunahme mehrmals früher als der entsprechende Meinungssaldo effektiv umkehrt. Danach wird auf der Basis dieser Prozentsätze ein Indikator erstellt, der die bereits verfügbaren ergänzen könnte, um den vierteljährlichen Produktionszuwachs im verarbeitenden Gewerbe für zwei Quartale vorauszuschätzen.

Suggested Citation

  • François Hild, 2006. "Un nouvel indicateur synthétique prenant en compte la dynamique des réponses individuelles à l'enquête Industrie," Économie et Statistique, Programme National Persée, vol. 395(1), pages 65-89.
  • Handle: RePEc:prs:ecstat:estat_0336-1454_2006_num_395_1_7132
    DOI: 10.3406/estat.2006.7132
    Note: DOI:10.3406/estat.2006.7132
    as

    Download full text from publisher

    File URL: https://doi.org/10.3406/estat.2006.7132
    Download Restriction: no

    File URL: https://www.persee.fr/doc/estat_0336-1454_2006_num_395_1_7132
    Download Restriction: no

    File URL: https://libkey.io/10.3406/estat.2006.7132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Entorf, Horst, 1993. "Constructing leading indicators from non-balanced sectoral business survey series," International Journal of Forecasting, Elsevier, vol. 9(2), pages 211-225, August.
    2. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
    3. Smith, Jeremy & McAleer, Michael, 1995. "Alternative Procedures for Converting Qualitative Response Data to Quantitative Expectations: An Application to Australian Manufacturing," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 165-185, April-Jun.
    4. Ciaran Driver & Giovanni Urga, 2004. "Transforming Qualitative Survey Data: Performance Comparisons for the UK," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(1), pages 71-89, February.
    5. Godfrey, Leslie G, 1978. "Testing against General Autoregressive and Moving Average Error Models When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1293-1301, November.
    6. James Mitchell & Richard J. Smith & Martin R. Weale, 2005. "Forecasting Manufacturing Output Growth Using Firm‐Level Survey Data," Manchester School, University of Manchester, vol. 73(4), pages 479-499, July.
    7. James Mitchell & Richard J. Smith & Martin R. Weale, 2005. "Forecasting Manufacturing Output Growth Using Firm‐Level Survey Data," Manchester School, University of Manchester, vol. 73(4), pages 479-499, July.
    8. François Bouton & Hélène Erkel-Rousse, 2002. "Conjonctures sectorielles et prévision à court terme de l'activité : l'apport de l'enquête de conjoncture dans les services," Économie et Statistique, Programme National Persée, vol. 359(1), pages 35-68.
    9. Gerhard Bry & Charlotte Boschan, 1971. "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs," NBER Books, National Bureau of Economic Research, Inc, number bry_71-1.
    10. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    11. Dr Martin Weale & Dr. James Mitchell, 2005. "Forecasting manufacturing output growth using firm-level survey data," National Institute of Economic and Social Research (NIESR) Discussion Papers 251, National Institute of Economic and Social Research.
    12. Begg,Iain & Henry,Brian, 1998. "Applied Economics and Public Policy," Cambridge Books, Cambridge University Press, number 9780521624145, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Biau & Hélène Erkel-Rousse & Nicolas Ferrari, 2006. "Réponses individuelles aux enquêtes de conjoncture et prévision de la production manufacturière," Économie et Statistique, Programme National Persée, vol. 395(1), pages 91-116.
    2. Troy D. Matheson & James Mitchell & Brian Silverstone, 2010. "Nowcasting and predicting data revisions using panel survey data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 313-330.
    3. Driver, Ciaran & Muñoz-Bugarin, Jair, 2019. "Financial constraints on investment: Effects of firm size and the financial crisis," Research in International Business and Finance, Elsevier, vol. 47(C), pages 441-457.
    4. James Mitchell & Richard J. Smith & Martin R. Weale, 2005. "Forecasting Manufacturing Output Growth Using Firm‐Level Survey Data," Manchester School, University of Manchester, vol. 73(4), pages 479-499, July.
    5. Pesaran, M. Hashem & Weale, Martin, 2006. "Survey Expectations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 14, pages 715-776, Elsevier.
    6. Lui, Silvia & Mitchell, James & Weale, Martin, 2011. "The utility of expectational data: Firm-level evidence using matched qualitative-quantitative UK surveys," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1128-1146, October.
    7. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," AQR Working Papers 201801, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2018.
    8. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "A Data-Driven Approach to Construct Survey-Based Indicators by Means of Evolutionary Algorithms," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 1-14, January.
    9. David Bywaters & Gareth Thomas, 2008. "Output Expectations and Forecasting of UK Manufacturing," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 36(2), pages 125-137, June.
    10. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Evolutionary Computation for Macroeconomic Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 833-849, February.
    11. Lahiri, Kajal & Zhao, Yongchen, 2015. "Quantifying survey expectations: A critical review and generalization of the Carlson–Parkin method," International Journal of Forecasting, Elsevier, vol. 31(1), pages 51-62.
    12. Silvia Lui & James Mitchell & Martin Weale, 2011. "Qualitative business surveys: signal or noise?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(2), pages 327-348, April.
    13. Kajal Lahiri & Yongchen Zhao, 2013. "Quantifying Heterogeneous Survey Expectations: The Carlson-Parkin Method Revisited," Discussion Papers 13-08, University at Albany, SUNY, Department of Economics.
    14. Troy Matheson & James Mitchell & Brian Silverstone, 2007. "Nowcasting and predicting data revisions in real time using qualitative panel survey data," Reserve Bank of New Zealand Discussion Paper Series DP2007/02, Reserve Bank of New Zealand.
    15. Dr Martin Weale & Dr. James Mitchell, 2005. "Forecasting manufacturing output growth using firm-level survey data," National Institute of Economic and Social Research (NIESR) Discussion Papers 251, National Institute of Economic and Social Research.
    16. Breitung, Jörg & Schmeling, Maik, 2013. "Quantifying survey expectations: What’s wrong with the probability approach?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 142-154.
    17. Lui, Silvia & Mitchell, James & Weale, Martin, 2011. "The utility of expectational data: Firm-level evidence using matched qualitative-quantitative UK surveys," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1128-1146, October.
    18. Klaus Abberger, 2006. "Qualitative Business Surveys in Manufacturing and Industrial Production - What can be Learned from Industry Branch Results?," ifo Working Paper Series 31, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    19. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Self-organizing map analysis of agents’ expectations. Different patterns of anticipation of the 2008 financial crisis”," AQR Working Papers 201508, University of Barcelona, Regional Quantitative Analysis Group, revised Mar 2015.
    20. Sorić, Petar & Lolić, Ivana & Claveria, Oscar & Monte, Enric & Torra, Salvador, 2019. "Unemployment expectations: A socio-demographic analysis of the effect of news," Labour Economics, Elsevier, vol. 60(C), pages 64-74.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prs:ecstat:estat_0336-1454_2006_num_395_1_7132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Equipe PERSEE (email available below). General contact details of provider: https://www.persee.fr/collection/estat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.