IDEAS home Printed from https://ideas.repec.org/a/prs/ecoprv/ecop_0249-4744_2009_num_190_4_8000.html
   My bibliography  Save this article

Assurance, intervention publique et ambiguïté : une étude expérimentale auprès de propriétaires forestiers privés

Author

Listed:
  • Marielle Brunette
  • Laure Cabantous
  • Stéphane Couture
  • Anne Stenger

Abstract

[eng] This article examines the effect of public compensation programs on the insurance behavior of private forest owners. We analyze the impact of three types of public programs currently used in some European countries : flat-rate aid, contingent flat-rate aid , and insurance subsidy. We also analyze the impact of ambiguity concerning the probability of risk occurrence on insurance demand. We begin by formulating theoretical predictions about the effects of public programs and ambiguity on insurance demand. We then test these predictions on forest owners. The results of our experiment confirm our predictions. Flat-rate aid and insurance subsidies do indeed reduce forest owners’ insurance demand. Contingent flat-rate aid generates a smaller reduction in insurance demand than non-contingent flat-rate aid. Forest owners are also more willing to pay for insurance in an ambiguous context than in a risky one. This finding confirms our prediction that forest owners are ambiguity-averse. [fre] Cet article examine l’effet de programmes d’aides publiques sur les comportements d’assurance de propriétaires forestiers privés. Nous analysons l’incidence de trois types de programmes publics, actuellement utilisés par différents gouvernements pour réguler la demande d’assurance : une aide forfaitaire, une aide forfaitaire contingente à l’assurance et une subvention à l’assurance. Nous nous interrogeons également sur l’impact de l’ambiguïté relative à la probabilité d’occurrence du risque sur la demande d’assurance. Dans un premier temps, nous proposons des prédictions théoriques portant sur les effets de ces deux composantes sur le comportement d’assurance. Ces différentes prédictions sont, dans un second temps, testées empiriquement. Les résultats de notre expérience , réalisée avec des propriétaires forestiers, confirment nos prédictions. Nous observons en effet que l’aide publique forfaitaire et la subvention à l’assurance réduisent la demande privée d’assurance des propriétaires. Nous constatons également que l’aide contingente engendre une réduction de demande privée d’assurance moins importante que l’aide forfaitaire. De plus, nos résultats montrent que les propriétaires forestiers ont un consentement à payer pour l’assurance plus fort en situation ambiguë qu’en situation risquée. Ce résultat prouve que les propriétaires forestiers sont averses à l’ambiguïté.

Suggested Citation

  • Marielle Brunette & Laure Cabantous & Stéphane Couture & Anne Stenger, 2009. "Assurance, intervention publique et ambiguïté : une étude expérimentale auprès de propriétaires forestiers privés," Économie et Prévision, Programme National Persée, vol. 190(4), pages 123-134.
  • Handle: RePEc:prs:ecoprv:ecop_0249-4744_2009_num_190_4_8000
    DOI: 10.3406/ecop.2009.8000
    Note: DOI:10.3406/ecop.2009.8000
    as

    Download full text from publisher

    File URL: https://doi.org/10.3406/ecop.2009.8000
    Download Restriction: no

    File URL: https://www.persee.fr/doc/ecop_0249-4744_2009_num_190_4_8000
    Download Restriction: no

    File URL: https://libkey.io/10.3406/ecop.2009.8000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sujoy Chakravarty & Jaideep Roy, 2009. "Recursive expected utility and the separation of attitudes towards risk and ambiguity: an experimental study," Theory and Decision, Springer, vol. 66(3), pages 199-228, March.
    2. Ghirardato, Paolo & Marinacci, Massimo, 2002. "Ambiguity Made Precise: A Comparative Foundation," Journal of Economic Theory, Elsevier, vol. 102(2), pages 251-289, February.
    3. Chambers, Robert G. & Melkonyan, Tigran A., 2007. "AJAE Appendix: Pareto Optimal Trade in an Uncertain World: GMOs and the Precautionary Principle," American Journal of Agricultural Economics APPENDICES, Agricultural and Applied Economics Association, vol. 89(2), pages 1-5, May.
    4. Robert G. Chambers & Tigran A. Melkonyan, 2007. "Pareto Optimal Trade in an Uncertain World: GMOs and the Precautionary Principle," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(2), pages 520-532.
    5. Kunreuther, Howard & Meszaros, Jacqueline & Hogarth, Robin M. & Spranca, Mark, 1995. "Ambiguity and underwriter decision processes," Journal of Economic Behavior & Organization, Elsevier, vol. 26(3), pages 337-352, May.
    6. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    7. Camerer, Colin & Weber, Martin, 1992. "Recent Developments in Modeling Preferences: Uncertainty and Ambiguity," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 325-370, October.
    8. Brunette, Marielle & Couture, Stéphane, 2008. "Public compensation for windstorm damage reduces incentives for risk management investments," Forest Policy and Economics, Elsevier, vol. 10(7-8), pages 491-499, October.
    9. Howard Kunreuther & Mark Pauly, 2006. "Rules rather than discretion: Lessons from Hurricane Katrina," Journal of Risk and Uncertainty, Springer, vol. 33(1), pages 101-116, September.
    10. Howard Kunreuther & Mark Pauly, 2006. "Rules Rather Than Discretion: Lessons from Hurricane Katrina," NBER Working Papers 12503, National Bureau of Economic Research, Inc.
    11. Peter Klibanoff & Massimo Marinacci & Sujoy Mukerji, 2005. "A Smooth Model of Decision Making under Ambiguity," Econometrica, Econometric Society, vol. 73(6), pages 1849-1892, November.
    12. Einhorn, Hillel J & Hogarth, Robin M, 1986. "Decision Making under Ambiguity," The Journal of Business, University of Chicago Press, vol. 59(4), pages 225-250, October.
    13. Yoram Halevy, 2007. "Ellsberg Revisited: An Experimental Study," Econometrica, Econometric Society, vol. 75(2), pages 503-536, March.
    14. Kaplow, Louis, 1991. "Incentives and Government Relief for Risk," Journal of Risk and Uncertainty, Springer, vol. 4(2), pages 167-175, April.
    15. W. Viscusi & Harrell Chesson, 1999. "Hopes and Fears: the Conflicting Effects of Risk Ambiguity," Theory and Decision, Springer, vol. 47(2), pages 157-184, October.
    16. Lewis, Tracy & Nickerson, David, 1989. "Self-insurance against natural disasters," Journal of Environmental Economics and Management, Elsevier, vol. 16(3), pages 209-223, May.
    17. Laure Cabantous, 2007. "Ambiguity Aversion in the Field of Insurance: Insurers’ Attitude to Imprecise and Conflicting Probability Estimates," Theory and Decision, Springer, vol. 62(3), pages 219-240, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guibril Zerbo, 2024. "Disposition à payer pour l’assurance contre les risques naturels: une étude de terrain au Burkina Faso," EconomiX Working Papers 2024-7, University of Paris Nanterre, EconomiX.
    2. Marielle Brunette, 2011. "Une application du Processus de Décision de Markov au secteur forestier : risque de production, de prix et perte de qualité," Post-Print hal-01000606, HAL.
    3. Marielle Brunette & Marc Hanewinkel, 2021. "Assurance financière et assurance naturelle : une application à la forêt," Working Papers of BETA 2021-28, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    4. Guibril Zerbo, 2024. "Arbitrage entre assurance et auto-assurance contre les risques naturels," EconomiX Working Papers 2024-30, University of Paris Nanterre, EconomiX.
    5. Marielle Brunette & Stéphane Couture & Serge S. Garcia, 2011. "Determinants of insurance demand against forest fire risk: Evidence from experimental and real world data," Post-Print hal-01191123, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keck, Steffen & Diecidue, Enrico & Budescu, David V., 2014. "Group decisions under ambiguity: Convergence to neutrality," Journal of Economic Behavior & Organization, Elsevier, vol. 103(C), pages 60-71.
    2. Marielle Brunette & Laure Cabantous & Stéphane Couture & Anne Stenger, 2008. "Insurance Demand for Disaster-type Risks and the Separation of Attitudes toward Risk and Ambiguity: an Experimental Study," Working Papers - Cahiers du LEF 2008-05, Laboratoire d'Economie Forestiere, AgroParisTech-INRA.
    3. Marielle Brunette & Laure Cabantous & Stéphane Couture & Anne Stenger, 2013. "The impact of governmental assistance on insurance demand under ambiguity: a theoretical model and an experimental test," Theory and Decision, Springer, vol. 75(2), pages 153-174, August.
    4. Treich, Nicolas, 2010. "The value of a statistical life under ambiguity aversion," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 15-26, January.
    5. Peter, Richard & Ying, Jie, 2020. "Do you trust your insurer? Ambiguity about contract nonperformance and optimal insurance demand," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 938-954.
    6. Laure Cabantous & Denis Hilton & Howard Kunreuther & Erwann Michel-Kerjan, 2011. "Is imprecise knowledge better than conflicting expertise? Evidence from insurers’ decisions in the United States," Journal of Risk and Uncertainty, Springer, vol. 42(3), pages 211-232, June.
    7. Robin Cubitt & Gijs Kuilen & Sujoy Mukerji, 2018. "The strength of sensitivity to ambiguity," Theory and Decision, Springer, vol. 85(3), pages 275-302, October.
    8. Christoph Bühren & Fabian Meier & Marco Pleßner, 2023. "Ambiguity aversion: bibliometric analysis and literature review of the last 60 years," Management Review Quarterly, Springer, vol. 73(2), pages 495-525, June.
    9. M. Brunette & S. Couture & J. Foncel & S. Garcia, 2020. "The decision to insure against forest fire risk: an econometric analysis combining hypothetical real data," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(1), pages 111-133, January.
    10. Théodora Dupont-Courtade, 2012. "Insurance demand under ambiguity and conflict for extreme risks: Evidence from a large representative survey," Documents de travail du Centre d'Economie de la Sorbonne 12020, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    11. Carmela Di Mauro & Massimo Finocchiaro Castro, 2011. "Kindness, confusion, or … ambiguity?," Experimental Economics, Springer;Economic Science Association, vol. 14(4), pages 611-633, November.
    12. d’Albis, Hippolyte & Attanasi, Giuseppe & Thibault, Emmanuel, 2020. "An experimental test of the under-annuitization puzzle with smooth ambiguity and charitable giving," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 694-717.
    13. Laure Cabantous & Denis Hilton, 2006. "De l'aversion à l'ambiguïté aux attitudes face à l'ambiguïté. Les apports d'une perspective psychologique en économie," Revue économique, Presses de Sciences-Po, vol. 57(2), pages 259-280.
    14. Michael Hoy & Richard Peter & Andreas Richter, 2014. "Take-up for genetic tests and ambiguity," Journal of Risk and Uncertainty, Springer, vol. 48(2), pages 111-133, April.
    15. Huang, Rachel J., 2012. "Ambiguity aversion, higher-order risk attitude and optimal effort," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 338-345.
    16. Lang, Matthias & Wambach, Achim, 2013. "The fog of fraud – Mitigating fraud by strategic ambiguity," Games and Economic Behavior, Elsevier, vol. 81(C), pages 255-275.
    17. Théodora Dupont-Courtade, 2012. "Insurance demand under ambiguity and conflict for extreme risks : Evidence from a large representative survey," Post-Print halshs-00718642, HAL.
    18. Dillenberger, David & Segal, Uzi, 2017. "Skewed noise," Journal of Economic Theory, Elsevier, vol. 169(C), pages 344-364.
    19. Diederik Aerts & Emmanuel Haven & Sandro Sozzo, 2018. "A proposal to extend expected utility in a quantum probabilistic framework," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 65(4), pages 1079-1109, June.
    20. Laurent Denant-Boemont & Olivier L’Haridon, 2013. "La rationalité à l'épreuve de l'économie comportementale," Revue française d'économie, Presses de Sciences-Po, vol. 0(2), pages 35-89.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prs:ecoprv:ecop_0249-4744_2009_num_190_4_8000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Equipe PERSEE (email available below). General contact details of provider: https://www.persee.fr/collection/ecop .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.