IDEAS home Printed from https://ideas.repec.org/a/prs/ecoprv/ecop_0249-4744_1996_num_126_5_5827.html
   My bibliography  Save this article

Estimation des élasticités de court et de long termes de la demande d'électricité sur données de panel à partir d'estimateurs à rétrécisseur

Author

Listed:
  • Hongyi Li
  • G.S. Maddala
  • Robert P. Trost

Abstract

[fre] Estimation des élasticités de court et de long termes de la demande d'électricité sur données de panel à partir d'estimateurs à rétrécisseurs. par Hongyi Li, G.S. Maddala et Robert P. Trost . On peut distinguer trois approches dans l'analyse des données de panel. L'estimation séparée des paramètres sur chaque série individuelle,1 l'estimation sur données empilées, avec ou sans effets spécifiques, et l'estimation sur données empilées en admettant un certain degré d'hétérogénéité, comme dans le modèle à coefficients aléatoires. Dans ce dernier cas, c'est la moyenne des coefficients des' séries individuelles qui nous intéresse. Cet article présente dans un cadre unifié,' les estimateurs relevant de cette troisième catégorie» en recourant à la fois à l'approche classique, à l'approche bayésienne empirique et à l'approche bayésienne classique. Ces méthodes sont illustrées par l'estimation d'élasticités de la demande d'électricité et de gaz naturel des ménages, aux États-Unis. [eng] Estimation of Short Run and Long Run Elasticities of Energy Demand from Panel Data Using Shrinkage . Estimators by Hongyi Li, G.S. Maddala and Robert P. Trost . In the analysis of panel data, there are, broadly speaking, three approaches: to present separate estimates of the parameters in each cross -section, present pooled estimates with or without cross-section specific effects, or present a pooled estimator assuming some, but not complete, heterogeneity, as in the random coefficient model. In the last case, we would be interested in the mean of the coefficients for the cross-sections, or the separate coefficients themselves. The paper presents in a unified framework the estimators in this last case, using both the classical, empirical Bayes, and Bayes methods. The methods are illustrated with estimation of elasticities of residential demand for electricity and natural gas in the U.S.

Suggested Citation

  • Hongyi Li & G.S. Maddala & Robert P. Trost, 1996. "Estimation des élasticités de court et de long termes de la demande d'électricité sur données de panel à partir d'estimateurs à rétrécisseur," Économie et Prévision, Programme National Persée, vol. 126(5), pages 127-141.
  • Handle: RePEc:prs:ecoprv:ecop_0249-4744_1996_num_126_5_5827
    DOI: 10.3406/ecop.1996.5827
    Note: DOI:10.3406/ecop.1996.5827
    as

    Download full text from publisher

    File URL: https://doi.org/10.3406/ecop.1996.5827
    Download Restriction: no

    File URL: https://www.persee.fr/doc/ecop_0249-4744_1996_num_126_5_5827
    Download Restriction: no

    File URL: https://libkey.io/10.3406/ecop.1996.5827?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohammed A. Al-Sahlawi, 1989. "The Demand for Natural Gas: A Survey of Price and Income Elasticities," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 77-90.
    2. Adrian Pagan, 1986. "Two Stage and Related Estimators and Their Applications," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 517-538.
    3. Ziemer, Rod F. & Wetzstein, Michael E., 1983. "A Stein-rule method for pooling data," Economics Letters, Elsevier, vol. 11(1-2), pages 137-143.
    4. Maddala, G S, 1971. "Generalized Least Squares with an Estimated Variance Covariance Matrix," Econometrica, Econometric Society, vol. 39(1), pages 23-33, January.
    5. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    6. Swamy, P A V B, 1970. "Efficient Inference in a Random Coefficient Regression Model," Econometrica, Econometric Society, vol. 38(2), pages 311-323, March.
    7. Robertson, D & Symons, J, 1992. "Some Strange Properties of Panel Data Estimators," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(2), pages 175-189, April-Jun.
    8. Alogoskoufis, George & Smith, Ron, 1991. "On Error Correction Models: Specification, Interpretation, Estimation," Journal of Economic Surveys, Wiley Blackwell, vol. 5(1), pages 97-128.
    9. Lester D. Taylor, 1975. "The Demand for Electricity: A Survey," Bell Journal of Economics, The RAND Corporation, vol. 6(1), pages 74-110, Spring.
    10. Nickell, Stephen, 1985. "Error Correction, Partial Adjustment and All That: An Expository Note," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 47(2), pages 119-129, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sylvie Charlot & Virginie Piguet & Bertrand Schmitt, 2003. "Capital public et productivite quels effets sur les disparites regionales ?," Revue d'économie politique, Dalloz, vol. 113(6), pages 851-880.
    2. Cepii & Cepremap, 2001. "MARMOTTE : a Multinational Model," Working Papers 2001-15, CEPII research center.
    3. Mohamed Siry Bah & Thomas Jobert, 2015. "Une analyse empirique du processus de convergence des pays africains," GREDEG Working Papers 2015-33, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    4. Stéphanie Guichard & Jean-Pierre Laffargue, 2001. "Comparaison de la formation des salaires dans un panel de pays industrialisés," Économie et Prévision, Programme National Persée, vol. 147(1), pages 37-49.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badi H. Baltagi, 2008. "Forecasting with panel data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 153-173.
    2. Kaufmann, Robert K., 2019. "Pass-through of motor gasoline taxes: Efficiency and efficacy of environmental taxes," Energy Policy, Elsevier, vol. 125(C), pages 207-215.
    3. Jean Imbs & Haroon Mumtaz & Morten O. Ravn & Hélène Rey, 2005. "PPP Strikes Back: Aggregation And the Real Exchange Rate," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 1-43.
    4. Md Zabid Iqbal & Bruce A. Babcock, 2018. "Global growing‐area elasticities of key agricultural crops estimated using dynamic heterogeneous panel methods," Agricultural Economics, International Association of Agricultural Economists, vol. 49(6), pages 681-690, November.
    5. De Graeve, Ferre & De Jonghe, Olivier & Vennet, Rudi Vander, 2007. "Competition, transmission and bank pricing policies: Evidence from Belgian loan and deposit markets," Journal of Banking & Finance, Elsevier, vol. 31(1), pages 259-278, January.
    6. Baltagi, Badi H. & Bresson, Georges & Pirotte, Alain, 2002. "Comparison of forecast performance for homogeneous, heterogeneous and shrinkage estimators: Some empirical evidence from US electricity and natural-gas consumption," Economics Letters, Elsevier, vol. 76(3), pages 375-382, August.
    7. Alexiou, Constantinos & Argitis, Georgios, 2005. "Macroeconomic Policy and Unemployment: Empirical Evidence from the Euroland," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 1(1), pages 1-29, June.
    8. Iscan, Talan B., 2000. "The terms of trade, productivity growth and the current account," Journal of Monetary Economics, Elsevier, vol. 45(3), pages 587-611, June.
    9. Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2017. "A meta-analysis on the price elasticity of energy demand," Energy Policy, Elsevier, vol. 102(C), pages 549-568.
    10. Burke, Paul J. & Yang, Hewen, 2016. "The price and income elasticities of natural gas demand: International evidence," Energy Economics, Elsevier, vol. 59(C), pages 466-474.
    11. Gautam, Tej K. & Paudel, Krishna P., 2018. "The demand for natural gas in the Northeastern United States," Energy, Elsevier, vol. 158(C), pages 890-898.
    12. Georges Bresson & Cheng Hsiao, 2011. "A functional connectivity approach for modeling cross-sectional dependence with an application to the estimation of hedonic housing prices in Paris," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 501-529, December.
    13. Raphael Brun-Aguerre & Ana-Maria Fuertes & Matthew Greenwood-Nimmo, 2017. "Heads I win; tails you lose: asymmetry in exchange rate pass-through into import prices," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 587-612, February.
    14. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    15. De Schryder, Selien & Peersman, Gert & Wauters, Joris, 2020. "Wage indexation and the monetary policy regime," Journal of Macroeconomics, Elsevier, vol. 63(C).
    16. Kapetanios, George & Price, Simon & Tasiou, Menelaos & Ventouri, Alexia, 2021. "State-level wage Phillips curves," Econometrics and Statistics, Elsevier, vol. 18(C), pages 1-11.
    17. Hendrik Schmitz & Reinhard Madlener, 2020. "Heterogeneity in price responsiveness for residential space heating in Germany," Empirical Economics, Springer, vol. 59(5), pages 2255-2281, November.
    18. Møller, Niels Framroze, 2008. "Bridging Economic Theory Models and the Cointegrated Vector Autoregressive Model," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 2, pages 1-29.
    19. Koedijk, Kees G. & Tims, Ben & van Dijk, Mathijs A., 2011. "Why panel tests of purchasing power parity should allow for heterogeneous mean reversion," Journal of International Money and Finance, Elsevier, vol. 30(1), pages 246-267, February.
    20. Minsu Chang & Francis J. DiTraglia, 2020. "A Generalized Focused Information Criterion for GMM," Papers 2011.07085, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prs:ecoprv:ecop_0249-4744_1996_num_126_5_5827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Equipe PERSEE (email available below). General contact details of provider: https://www.persee.fr/collection/ecop .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.