IDEAS home Printed from https://ideas.repec.org/a/prs/ecoprv/ecop_0249-4744_1982_num_53_2_3179.html
   My bibliography  Save this article

Un modèle de l'intermediation financière française : Prolix

Author

Listed:
  • Mario Dehove

Abstract

[eng] Prolix : a model of French financial intermediating, . by Mario Dehove. . The Prolix model (abbreviation of « Projection des Liquidités») was set up at the Office of Macroeconomic Research of the Forecast Department. It constitutes the financial part of the Copain model (abbreviation of « COm- portements PAtrimoniaux INtégrés», i.e. «integrated patrimony behavior»), a macroeconomic model which was described in Edition No. 48 of « Economie et prévision ». It reproduces the mechanism of monetary creation and, in general terms, shows the whole process of French financial intermediating during the period from 1960 to 1978. The model is presented in three chapters. . The author first examines the different periods of French financial intermediating since the end of the war. He makes a distinction between two basic systems of logic, depending on the part played by the Treasury and the commercial banks. They followed one another at the beginning of the 1960's. . In the first period, the activity of the banks remained secondary, their access to rediscounting was limited and the role of the Treasury was decisive. Subsequently, in the second period, the commercial banks imposed their competitive logic in monetary creation and the Treasury withdrew. The credit market no longer was restricted and the issuing of money was regulated by the rediscount rate established by the Bank of France on funds made available to the banks. The relatively rare credit rationing did not constitute an abandonment of this system, but was instead an emergency procedure. . The author describes the principles followed in setting up models of these two systems of financial intermediating, centering his analysis on the second period on which the estimates have been made. He likewise indicates the changes which must be made in the central model in order to describe the sequence of the particular phases of credit rationing. After this, the retrospective simulations of the model are described. Finally, in the third part, the author examines the influence of financial variables on the behavior of non-financial agents (enterprises and households), and describes the «strategy» they adopt when, in a closed economy, their monetary environment is altered. He then reviews the lessons to be learned in economic policy, and specifically monetary policy, through an observation of the analytic simulation of Prolix when integrated in a global model (Copain). . On a short-term basis the model reveals, in the case of monetary restrictions, a much greater tendency toward « stagflation » than is found in neo-keynesian models. It is due, in particular, to the complete pegging of interest rates of banks to the rates of the monetary market. On a long-term basis, the «orthodox» characteristics of a stricter monetary policy can be found once more: stabilization of activity at a lower level and a gradual inflexibility of prices. . However, it is not the «monetarist» adjustment of cash balance to desired levels which causes these long-term effects but rather the gradual dissipation of the influence of increased rates on real behavior through the readjustment of debts and thus the transfer of interests. [fre] Un modèle de l'intermédiation financière française : Prolix, . par Mario Dehove. . Le modèle Prolix (pour Projection des Liquidités) a été construit au Bureau de la recherche macroéconomique de la Direction de la prévision. Il constitue la partie financière du modèle Copain (pour Comportements PAtnmoniaux INtégrés), modèle macroéconomique qui a été présenté dans le n°48 d'Economie et prévision. Il retrace les mécanismes de la création monétaire et, plus généralement, il décrit le fonctionnement d'ensemble de l'intermédiation financière française, sur la période 1960- 1978. Le modèle est présenté en trois chapitres. L'auteur s'interroge d'abord sur la pénodisation de l'intermédiation financière française depuis la fin de la guerre. Il distingue deux logiques fondamentales selon les rôles qu'y jouent le Trésor et les banques commerciales. Elles se sont succédé au tout début des années soixante. Dans la première période, l'activité des banques reste marginale, leur accès au refinancement est rationné et le rôle du Trésor est déterminant. Ensuite, dans la deuxième période, les banques commerciales imposent leur logique concurrentielle à la création monétaire et le Trésor se désengage. Le marché du crédit n'est plus rationné et l'émission de monnaie est réglée par le prix auquel la Banque de France accorde le refinancement dont les banques ont besoin. L'encadrement du crédit, relativement épisodique, ne remet pas en cause cette dernière logique ; il en constitue plutôt une modalité exceptionnelle. . L'auteur expose les principes de modélisation de ces deux organisations de l'intermédiation financière en centrant l'analyse autour de la seconde période sur laquelle les estimations ont été faites. Il indique également les modifications qu'il faut apporter au modèle central pour retracer les phases particulières d'encadrement du crédit. Ensuite, sont données les simulations rétrospectives du modèle. Enfin, dans une troisième partie, l'auteur étudie l'influence des variables financières sur les comportements des agents non financiers (entreprises et ménages) et décrit la «stratégie» qu'ils mettent en œuvre lorsque, en économie fermée, leur environnement monétaire se modifie. Il présente ensuite les enseignements de politique économique, en l'occurrence de politique monétaire, que l'on peut tirer du fonctionnement vanantiel de Prolix lorsqu'il est intégré à un modèle d'ensemble (Copain). . A court terme le modèle fait apparaître, en cas de restrictions monétaires, une tendance stagflationniste beaucoup plus importante que celle des modèles néo-keynésiens. Elle est due en particulier à l'indexation complète du taux d'intérêt bancaire au taux du marché monétaire. A long terme, on retrouve les propriétés « orthodoxes » d'une politique monétaire plus sévère : stabilisation à un niveau plus faible de l'activité et infléchissement progressif des prix. . Toutefois, ce n'est pas l'ajustement «monétariste» des encaisses à des encaisses désirées qui provoque ces effets de long terme mais l'épuisement progressif, à travers le réajustement des endettements et donc des transferts d'intérêts, de l'influence de l'augmentation des taux sur les comportements réels.

Suggested Citation

  • Mario Dehove, 1982. "Un modèle de l'intermediation financière française : Prolix," Économie et Prévision, Programme National Persée, vol. 53(2), pages 3-72.
  • Handle: RePEc:prs:ecoprv:ecop_0249-4744_1982_num_53_2_3179
    DOI: 10.3406/ecop.1982.3179
    Note: DOI:10.3406/ecop.1982.3179
    as

    Download full text from publisher

    File URL: https://doi.org/10.3406/ecop.1982.3179
    Download Restriction: no

    File URL: https://www.persee.fr/doc/ecop_0249-4744_1982_num_53_2_3179
    Download Restriction: no

    File URL: https://libkey.io/10.3406/ecop.1982.3179?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William F. Sharpe, 1963. "A Simplified Model for Portfolio Analysis," Management Science, INFORMS, vol. 9(2), pages 277-293, January.
    2. Modigliani, Franco & Rasche, Robert & Cooper, J Philip, 1970. "Central Bank Policy, the Money Supply, and the Short-Term Rate of Interest," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 2(2), pages 166-218, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michel Boutillier & Pierre Villa, 1985. "Politique monétaire en économie d'endettement vue à travaes le modèle OFCE-annuel," Revue de l'OFCE, Programme National Persée, vol. 13(1), pages 119-147.
    2. Michel Boutillier & Daniel Gabrielli & Dominique Plihon, 1988. "La baisse des taux d'intérêt en France : quels effets en attendre ?," Revue Économique, Programme National Persée, vol. 39(4), pages 841-876.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    2. Heidari , Hassan & Refah-Kahriz, Arash & Hashemi Berenjabadi, Nayyer, 2018. "Dynamic Relationship between Macroeconomic Variables and Stock Return Volatility in Tehran Stock Exchange: Multivariate MS ARMA GARCH Approach," Quarterly Journal of Applied Theories of Economics, Faculty of Economics, Management and Business, University of Tabriz, vol. 5(2), pages 223-250, August.
    3. Hanke, Michael & Stöckl, Sebastian & Weissensteiner, Alex, 2020. "Political event portfolios," Journal of Banking & Finance, Elsevier, vol. 118(C).
    4. D'Arcangelis, Anna Maria & Rotundo, Giulia, 2021. "Herding in mutual funds: A complex network approach," Journal of Business Research, Elsevier, vol. 129(C), pages 679-686.
    5. Fuinhas, José Alberto & Marques, António Cardoso & Nogueira, David Coito, 2014. "Análise VAR dos índices bolsistas SP500, FTSE100, PSI20, HSI e IBOVESPA [Integration of the indexes SP500, FTSE100, PSI20, HSI and IBOVESPA: A VAR approach]," MPRA Paper 62092, University Library of Munich, Germany, revised 10 Feb 2015.
    6. Sharpe, William F, 1991. "Capital Asset Prices with and without Negative Holdings," Journal of Finance, American Finance Association, vol. 46(2), pages 489-509, June.
    7. Magdalena Mikolajek-Gocejna, 2021. "Estimation, Instability, and Non-Stationarity of Beta Coefficients for Twenty-four Emerging Markets in 2005-2021," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 370-395.
    8. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.
    9. Francesco Lautizi, 2015. "Large Scale Covariance Estimates for Portfolio Selection," CEIS Research Paper 353, Tor Vergata University, CEIS, revised 07 Aug 2015.
    10. Paskalis Glabadanidis, 2020. "Portfolio Strategies to Track and Outperform a Benchmark," JRFM, MDPI, vol. 13(8), pages 1-26, August.
    11. Dimson, Elroy & Marsh, Paul, 1997. "Stress tests of capital requirements," Journal of Banking & Finance, Elsevier, vol. 21(11-12), pages 1515-1546, December.
    12. Martin, Will, 2021. "Tools for measuring the full impacts of agricultural interventions," IFPRI-MCC technical papers 2, International Food Policy Research Institute (IFPRI).
    13. S. Saravanakumar & S. Gunasekaran & R. Aarthy, 2011. "Investors Attitude towards Risk and Return Content in Equity and Derivatives," Indian Journal of Commerce and Management Studies, Educational Research Multimedia & Publications,India, vol. 2(2), pages 01-11, March.
    14. Baele, Lieven & Pungulescu, Crina & Ter Horst, Jenke, 2007. "Model uncertainty, financial market integration and the home bias puzzle," Journal of International Money and Finance, Elsevier, vol. 26(4), pages 606-630, June.
    15. Meixing DAI, 2009. "On the role of money growth targeting under inflation targeting regime," Working Papers of BETA 2009-11, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    16. Kanwal Iqbal Khan & Syed M. Waqar Azeem Naqvi & Muhammad Mudassar Ghafoor & Rana Shahid Imdad Akash, 2020. "Sustainable Portfolio Optimization with Higher-Order Moments of Risk," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    17. Chen, Jia & Li, Degui & Linton, Oliver & Lu, Zudi, 2016. "Semiparametric dynamic portfolio choice with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 194(2), pages 309-318.
    18. Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2015. "Do High‐Frequency Data Improve High‐Dimensional Portfolio Allocations?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 263-290, March.
    19. Božović, Miloš, 2023. "Can a dynamic correlation factor improve the pricing of industry portfolios?," Finance Research Letters, Elsevier, vol. 53(C).
    20. Cullinane, Kevin, 1995. "A portfolio analysis of market investments in dry bulk shipping," Transportation Research Part B: Methodological, Elsevier, vol. 29(3), pages 181-200, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prs:ecoprv:ecop_0249-4744_1982_num_53_2_3179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Equipe PERSEE (email available below). General contact details of provider: https://www.persee.fr/collection/ecop .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.