IDEAS home Printed from https://ideas.repec.org/a/prg/jnlpep/v2019y2019i4id703p385-401.html
   My bibliography  Save this article

Profitability of Trading in the Direction of Asset Price Jumps - Analysis of Multiple Assets and Frequencies

Author

Listed:
  • Milan Fičura

Abstract

Profitability of a trading system based on the momentum-like effects of asset price jumps was tested on four currency markets (EUR/USD, GBP/USD, USD/CHF and USD/JPY) and three futures markets (Light Crude Oil, E-Mini S&P 500 and VIX), on 7 frequencies (1-minute to 1-day), over a period of more than 20 years. The proposed trading system entered long and short trades in the direction of asset price jumps and held the positions for a fixed horizon, optimized on the in-sample period. The system achieved statistically significant out-sample profits for the USD/CHF, EUR/USD and GBP/USD exchange rates, especially on the 15-minute, 30-minute and 1-hour frequencies, with expected returns of up to 20-30% p.a., including transaction costs. On the 1-day frequency, on the USD/JPY and on the three analysed futures markets, only insignificant profits or losses were achieved. On the 1-minute frequency, the system ended with a loss for all of the assets.

Suggested Citation

  • Milan Fičura, 2019. "Profitability of Trading in the Direction of Asset Price Jumps - Analysis of Multiple Assets and Frequencies," Prague Economic Papers, Prague University of Economics and Business, vol. 2019(4), pages 385-401.
  • Handle: RePEc:prg:jnlpep:v:2019:y:2019:i:4:id:703:p:385-401
    DOI: 10.18267/j.pep.703
    as

    Download full text from publisher

    File URL: http://pep.vse.cz/doi/10.18267/j.pep.703.html
    Download Restriction: free of charge

    File URL: http://pep.vse.cz/doi/10.18267/j.pep.703.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.18267/j.pep.703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    2. repec:hal:journl:peer-00741630 is not listed on IDEAS
    3. Hanousek Jan & Kočenda Evžen & Novotný Jan, 2012. "The identification of price jumps," Monte Carlo Methods and Applications, De Gruyter, vol. 18(1), pages 53-77, January.
    4. Jiang, George J. & Oomen, Roel C.A., 2008. "Testing for jumps when asset prices are observed with noise-a "swap variance" approach," Journal of Econometrics, Elsevier, vol. 144(2), pages 352-370, June.
    5. Novotný, Jan & Petrov, Dmitri & Urga, Giovanni, 2015. "Trading price jump clusters in foreign exchange markets," Journal of Financial Markets, Elsevier, vol. 24(C), pages 66-92.
    6. repec:taf:jnlbes:v:30:y:2012:i:2:p:242-255 is not listed on IDEAS
    7. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:prg:jnlpep:v:preprint:id:703:p:1-17 is not listed on IDEAS
    2. Jan Hanousek & Jan Novotný, 2014. "Cenové skoky během finanční nejistoty: od intuice k regulační perspektivě [Price Jumps during Financial Crisis: From Intuition to Financial Regulation]," Politická ekonomie, Prague University of Economics and Business, vol. 2014(1), pages 32-48.
    3. Prosper Dovonon & Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2019. "Bootstrapping High-Frequency Jump Tests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 793-803, April.
    4. Arouri, Mohamed & M’saddek, Oussama & Nguyen, Duc Khuong & Pukthuanthong, Kuntara, 2019. "Cojumps and asset allocation in international equity markets," Journal of Economic Dynamics and Control, Elsevier, vol. 98(C), pages 1-22.
    5. Hanousek, Jan & Novotný, Jan, 2012. "Price jumps in Visegrad-country stock markets: An empirical analysis," Emerging Markets Review, Elsevier, vol. 13(2), pages 184-201.
    6. Hanousek Jan & Kočenda Evžen & Novotný Jan, 2012. "The identification of price jumps," Monte Carlo Methods and Applications, De Gruyter, vol. 18(1), pages 53-77, January.
    7. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020. "High-frequency jump tests: Which test should we use?," Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
    8. Milan Ficura & Jiri Witzany, 2016. "Estimating Stochastic Volatility and Jumps Using High-Frequency Data and Bayesian Methods," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(4), pages 278-301, August.
    9. Aitor Ciarreta & Peru Muniainy & Ainhoa Zarraga, 2017. "Modelling Realized Volatility in Electricity Spot Prices: New insights and Application to the Japanese Electricity Market," ISER Discussion Paper 0991, Institute of Social and Economic Research, Osaka University.
    10. Caporin, Massimiliano & Kolokolov, Aleksey & Renò, Roberto, 2017. "Systemic co-jumps," Journal of Financial Economics, Elsevier, vol. 126(3), pages 563-591.
    11. Zhang, Chuanhai & Liu, Zhi & Liu, Qiang, 2021. "Jumps at ultra-high frequency: Evidence from the Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    12. Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "Dynamic asset price jumps and the performance of high frequency tests and measures," Monash Econometrics and Business Statistics Working Papers 14/17, Monash University, Department of Econometrics and Business Statistics.
    13. Han, Seung-Oh & Huh, Sahn-Wook & Park, Jeayoung, 2023. "Detecting jumps amidst prevalent zero returns: Evidence from the U.S. Treasury securities," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 276-307.
    14. Barunik, Jozef & Vacha, Lukas, 2018. "Do co-jumps impact correlations in currency markets?," Journal of Financial Markets, Elsevier, vol. 37(C), pages 97-119.
    15. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    16. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    17. Hassan Zada & Huma Maqsood & Shakeel Ahmed & Muhammad Zeb Khan, 2023. "Information shocks, market returns and volatility: a comparative analysis of developed equity markets in Asia," SN Business & Economics, Springer, vol. 3(1), pages 1-22, January.
    18. Caporin, Massimiliano & Kolokolov, Aleksey & Renò, Roberto, 2014. "Multi-jumps," MPRA Paper 58175, University Library of Munich, Germany.
    19. Li, Xiafei & Liao, Yin & Lu, Xinjie & Ma, Feng, 2022. "An oil futures volatility forecast perspective on the selection of high-frequency jump tests," Energy Economics, Elsevier, vol. 116(C).
    20. Aitor Ciarreta & Peru Muniain & Ainhoa Zarraga, 2020. "Realized volatility and jump testing in the Japanese electricity spot market," Empirical Economics, Springer, vol. 58(3), pages 1143-1166, March.
    21. José E. Figueroa-López & Jeffrey Nisen, 2019. "Second-order properties of thresholded realized power variations of FJA additive processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 431-474, October.

    More about this item

    Keywords

    asset price jumps; L-estimator; high-frequency trading; momentum trading;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prg:jnlpep:v:2019:y:2019:i:4:id:703:p:385-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Vojir (email available below). General contact details of provider: https://edirc.repec.org/data/uevsecz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.