IDEAS home Printed from https://ideas.repec.org/a/prg/jnlpep/v2014y2014i1id475p108-120.html
   My bibliography  Save this article

Models of Subsidy Allocation among City Districts

Author

Listed:
  • Martin Dlouhý

Abstract

Each year, a part of the budget of the City of Prague is allocated among its city districts in the form of subsidies. The objective of the City of Prague is to find such a set of criteria and such a set of relative weights that estimate the expected cost of local public administration best. The objective of each city district is subsidy maximization by influencing the criteria and weights. Two quantitative methods that set the weights without participation of decision makers are presented. The first method is based on the multiple-criteria decision making and the second one on the zero-sum gains DEA model. The illustrative calculations for the year 2012 are presented. An application of the multiple-criteria decision making model requires re-allocation of 8.3% of the total subsidy budget in comparison to the real subsidy values in the year 2012. An application of the zero-some gains DEA model requires re-allocation of 14.0% of the total subsidy to city districts. We are not able to offer any definitive answers about which allocation model is the best one, however, an analysis of the subsidy allocation process can help us in understanding the nature of the subsidy allocation problem and its potential weaknesses.

Suggested Citation

  • Martin Dlouhý, 2014. "Models of Subsidy Allocation among City Districts," Prague Economic Papers, Prague University of Economics and Business, vol. 2014(1), pages 108-120.
  • Handle: RePEc:prg:jnlpep:v:2014:y:2014:i:1:id:475:p:108-120
    DOI: 10.18267/j.pep.475
    as

    Download full text from publisher

    File URL: http://pep.vse.cz/doi/10.18267/j.pep.475.html
    Download Restriction: free of charge

    File URL: http://pep.vse.cz/doi/10.18267/j.pep.475.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.18267/j.pep.475?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin Dlouhý & Josef Jablonský & Ivana Novosádová, 2007. "Využití analýzy obalu dat pro hodnocení efektivnosti českých nemocnic [Use of data envelopment analysis for efficiency evaluation of czech hospitals]," Politická ekonomie, Prague University of Economics and Business, vol. 2007(1), pages 60-71.
    2. Lins, Marcos P. Estellita & Gomes, Eliane G. & Soares de Mello, Joao Carlos C. B. & Soares de Mello, Adelino Jose R., 2003. "Olympic ranking based on a zero sum gains DEA model," European Journal of Operational Research, Elsevier, vol. 148(2), pages 312-322, July.
    3. Josef Jablonský, 2004. "Modely hodnocení efektivnosti produkčních jednotek [Models for efficiency evaluation of decision making units]," Politická ekonomie, Prague University of Economics and Business, vol. 2004(2).
    4. Martin Dlouhý, 2001. "Matematický model restrukturalizace odvětví a firmy [A mathematical model of sector/firm restructuralization]," Politická ekonomie, Prague University of Economics and Business, vol. 2001(4).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, J. & Wen, W. & Wang, M. & Zhou, P., 2022. "Optimizing the provincial target allocation scheme of renewable portfolio standards in China," Energy, Elsevier, vol. 250(C).
    2. Alireza Amirteimoori & Sohrab Kordrostami, 2012. "A distance-based measure of super efficiency in data envelopment analysis: an application to gas companies," Journal of Global Optimization, Springer, vol. 54(1), pages 117-128, September.
    3. J-L Hu & C-Y Fang, 2010. "Do market share and efficiency matter for each other? An application of the zero-sum gains data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 647-657, April.
    4. Yu, Shasha & Lei, Ming & Deng, Honghui, 2023. "Evaluation to fixed-sum-outputs DMUs by non-oriented equilibrium efficient frontier DEA approach with Nash bargaining-based selection," Omega, Elsevier, vol. 115(C).
    5. Alexandre Marinho & Simone de Souza Cardoso & Vivian Vicente de Almeida, 2009. "Avaliação da Eficiência Técnica dos Países nos Jogos Olímpicos de Pequim – 2008," Discussion Papers 1394, Instituto de Pesquisa Econômica Aplicada - IPEA.
    6. E G Gomes & M P E Lins, 2008. "Modelling undesirable outputs with zero sum gains data envelopment analysis models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 616-623, May.
    7. Jie Wu & Zhixiang Zhou & Liang Liang, 2010. "Measuring the Performance of Nations at Beijing Summer Olympics Using Integer-Valued DEA Model," Journal of Sports Economics, , vol. 11(5), pages 549-566, October.
    8. Pedro Garcia‐del‐Barrio & Carlos Gomez‐Gonzalez & José Manuel Sánchez‐Santos, 2020. "Popularity and Visibility Appraisals for Computing Olympic Medal Rankings," Social Science Quarterly, Southwestern Social Science Association, vol. 101(5), pages 2137-2157, September.
    9. Ding, Tao & Zhang, Yun & Zhang, Danlu & Li, Feng, 2023. "Performance evaluation of Chinese research universities: A parallel interactive network DEA approach with shared and fixed sum inputs," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    10. Chen, Zhenling & Yuan, Xiao-Chen & Zhang, Xiaoling & Cao, Yunfei, 2020. "How will the Chinese national carbon emissions trading scheme work? The assessment of regional potential gains," Energy Policy, Elsevier, vol. 137(C).
    11. Li, Yongjun & Lei, Xiyang & Dai, Qianzhi & Liang, Liang, 2015. "Performance evaluation of participating nations at the 2012 London Summer Olympics by a two-stage data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 243(3), pages 964-973.
    12. Chu, Junfei & Hou, Tianteng & Li, Feng & Yuan, Zhe, 2024. "Dynamic bargaining game DEA carbon emissions abatement allocation and the Nash equilibrium," Energy Economics, Elsevier, vol. 134(C).
    13. Li, Yongjun & Liang, Liang & Chen, Yao & Morita, Hiroshi, 2008. "Models for measuring and benchmarking olympics achievements," Omega, Elsevier, vol. 36(6), pages 933-940, December.
    14. Yang, Min & Li, Yong Jun & Liang, Liang, 2015. "A generalized equilibrium efficient frontier data envelopment analysis approach for evaluating DMUs with fixed-sum outputs," European Journal of Operational Research, Elsevier, vol. 246(1), pages 209-217.
    15. Plácido Moreno & Sebastián Lozano, 2014. "A network DEA assessment of team efficiency in the NBA," Annals of Operations Research, Springer, vol. 214(1), pages 99-124, March.
    16. Josef Jablonsky, 2018. "Ranking of countries in sporting events using two-stage data envelopment analysis models: a case of Summer Olympic Games 2016," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 951-966, December.
    17. Wang, Yunqi & Qiu, Jing & Tao, Yuechuan & Zhang, Xian & Wang, Guibin, 2020. "Low-carbon oriented optimal energy dispatch in coupled natural gas and electricity systems," Applied Energy, Elsevier, vol. 280(C).
    18. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
    19. Siqin Xiong & Yushen Tian & Junping Ji & Xiaoming Ma, 2017. "Allocation of Energy Consumption among Provinces in China: A Weighted ZSG-DEA Model," Sustainability, MDPI, vol. 9(11), pages 1-12, November.
    20. Pang, Rui-zhi & Deng, Zhong-qi & Chiu, Yung-ho, 2015. "Pareto improvement through a reallocation of carbon emission quotas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 419-430.

    More about this item

    Keywords

    data envelopment analysis; subsidy allocation; zero sum gains;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • H71 - Public Economics - - State and Local Government; Intergovernmental Relations - - - State and Local Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prg:jnlpep:v:2014:y:2014:i:1:id:475:p:108-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Vojir (email available below). General contact details of provider: https://edirc.repec.org/data/uevsecz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.