IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v36y2008i6p933-940.html
   My bibliography  Save this article

Models for measuring and benchmarking olympics achievements

Author

Listed:
  • Li, Yongjun
  • Liang, Liang
  • Chen, Yao
  • Morita, Hiroshi

Abstract

As demonstrated in several recent studies, data envelopment analysis (DEA) is a useful tool for evaluating and comparing the performance of nations competing in the Olympic Games. Assurance regions (ARs) have been used to further refine the DEA results. These AR DEA models assume that ARs apply uniformly across all nations. Such models can have shortcomings in the sense that different nations may impose different ARs, as nations may value gold, silver, and bronze medals differently. This paper extends previous DEA studies by incorporating multiple sets of nation-specific ARs into the DEA. By doing so, we establish fair models for measuring and benchmarking the performance of nations at six summer Olympic Games.

Suggested Citation

  • Li, Yongjun & Liang, Liang & Chen, Yao & Morita, Hiroshi, 2008. "Models for measuring and benchmarking olympics achievements," Omega, Elsevier, vol. 36(6), pages 933-940, December.
  • Handle: RePEc:eee:jomega:v:36:y:2008:i:6:p:933-940
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(07)00088-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seiford, Lawrence M. & Zhu, Joe, 2003. "Context-dependent data envelopment analysis--Measuring attractiveness and progress," Omega, Elsevier, vol. 31(5), pages 397-408, October.
    2. S Lozano & G Villa & F Guerrero & P Cortés, 2002. "Measuring the performance of nations at the Summer Olympics using data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(5), pages 501-511, May.
    3. Lins, Marcos P. Estellita & Gomes, Eliane G. & Soares de Mello, Joao Carlos C. B. & Soares de Mello, Adelino Jose R., 2003. "Olympic ranking based on a zero sum gains DEA model," European Journal of Operational Research, Elsevier, vol. 148(2), pages 312-322, July.
    4. Thompson, Russell G. & Langemeier, Larry N. & Lee, Chih-Tah & Lee, Euntaik & Thrall, Robert M., 1990. "The role of multiplier bounds in efficiency analysis with application to Kansas farming," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 93-108.
    5. Andrew B. Bernard & Meghan R. Busse, 2004. "Who Wins the Olympic Games: Economic Resources and Medal Totals," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 413-417, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Botti, Laurent & Briec, Walter & Cliquet, Gérard, 2009. "Plural forms versus franchise and company-owned systems: A DEA approach of hotel chain performance," Omega, Elsevier, vol. 37(3), pages 566-578, June.
    2. Qi Wang & Tobias Jeppsson, 2022. "Identifying benchmark units for research management and evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7557-7574, December.
    3. Partovi, Fariborz Y., 2011. "Corporate philanthropic selection using data envelopment analysis," Omega, Elsevier, vol. 39(5), pages 522-527, October.
    4. Magdalena Szydełko, 2022. "Ocena klasyfikacji i typologii benchmarkingu z wykorzystaniem warunków poprawności podziału logicznego pojęć," Nowoczesne Systemy Zarządzania. Modern Management Systems, Military University of Technology, Faculty of Security, Logistics and Management, Institute of Organization and Management, issue 4, pages 79-90.
    5. Pedro Garcia‐del‐Barrio & Carlos Gomez‐Gonzalez & José Manuel Sánchez‐Santos, 2020. "Popularity and Visibility Appraisals for Computing Olympic Medal Rankings," Social Science Quarterly, Southwestern Social Science Association, vol. 101(5), pages 2137-2157, September.
    6. Tsoi, Ka Ho & Loo, Becky P.Y., 2021. "Cutting the loss: International benchmarking of a sustainable ferry business model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 167-188.
    7. Jarmila Horváthová & Martina Mokrišová & Mária Vrábliková, 2021. "Benchmarking—A Way of Finding Risk Factors in Business Performance," JRFM, MDPI, vol. 14(5), pages 1-17, May.
    8. Xiyang Lei & Yongjun Li & Qiwei Xie & Liang Liang, 2015. "Measuring Olympics achievements based on a parallel DEA approach," Annals of Operations Research, Springer, vol. 226(1), pages 379-396, March.
    9. Wu, Jie & Liang, Liang & Chen, Yao, 2009. "DEA game cross-efficiency approach to Olympic rankings," Omega, Elsevier, vol. 37(4), pages 909-918, August.
    10. Calzada-Infante, Laura & Lozano, Sebastián, 2016. "Analysing Olympic Games through dominance networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1215-1230.
    11. Wang, John & Yan, Ruiliang & Hollister, Kimberly & Zhu, Dan, 2008. "A historic review of management science research in China," Omega, Elsevier, vol. 36(6), pages 919-932, December.
    12. Du, Juan & Liang, Liang & Chen, Yao & Bi, Gong-bing, 2010. "DEA-based production planning," Omega, Elsevier, vol. 38(1-2), pages 105-112, February.
    13. Li, Yongjun & Lei, Xiyang & Dai, Qianzhi & Liang, Liang, 2015. "Performance evaluation of participating nations at the 2012 London Summer Olympics by a two-stage data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 243(3), pages 964-973.
    14. Sebastián Lozano & Gabriel Villa, 2023. "Multiobjective centralized DEA approach to Tokyo 2020 Olympic Games," Annals of Operations Research, Springer, vol. 322(2), pages 879-919, March.
    15. Yang, Min & Li, Yongjun & Chen, Ya & Liang, Liang, 2014. "An equilibrium efficiency frontier data envelopment analysis approach for evaluating decision-making units with fixed-sum outputs," European Journal of Operational Research, Elsevier, vol. 239(2), pages 479-489.
    16. Sekitani, Kazuyuki & Zhao, Yu, 2021. "Performance benchmarking of achievements in the Olympics: An application of Data Envelopment Analysis with restricted multipliers," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1202-1212.
    17. Yang, Min & Li, Yong Jun & Liang, Liang, 2015. "A generalized equilibrium efficient frontier data envelopment analysis approach for evaluating DMUs with fixed-sum outputs," European Journal of Operational Research, Elsevier, vol. 246(1), pages 209-217.
    18. M. Flegl & L. A. Andrade, 2018. "Measuring countries’ performance at the Summer Olympic Games in Rio 2016," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 823-846, November.
    19. Plácido Moreno & Sebastián Lozano, 2014. "A network DEA assessment of team efficiency in the NBA," Annals of Operations Research, Springer, vol. 214(1), pages 99-124, March.
    20. Josef Jablonsky, 2018. "Ranking of countries in sporting events using two-stage data envelopment analysis models: a case of Summer Olympic Games 2016," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 951-966, December.
    21. Natalia R. Potoczek, 2021. "The use of process benchmarking in the water industry to introduce changes in the digitization of the company’s value chain," Journal of Entrepreneurship, Management and Innovation, Fundacja Upowszechniająca Wiedzę i Naukę "Cognitione", vol. 17(4), pages 51-89.
    22. Villa, G. & Lozano, S., 2016. "Assessing the scoring efficiency of a football match," European Journal of Operational Research, Elsevier, vol. 255(2), pages 559-569.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Wu & Zhixiang Zhou & Liang Liang, 2010. "Measuring the Performance of Nations at Beijing Summer Olympics Using Integer-Valued DEA Model," Journal of Sports Economics, , vol. 11(5), pages 549-566, October.
    2. Pedro Garcia‐del‐Barrio & Carlos Gomez‐Gonzalez & José Manuel Sánchez‐Santos, 2020. "Popularity and Visibility Appraisals for Computing Olympic Medal Rankings," Social Science Quarterly, Southwestern Social Science Association, vol. 101(5), pages 2137-2157, September.
    3. Wu, Jie & Liang, Liang & Yang, Feng, 2009. "Achievement and benchmarking of countries at the Summer Olympics using cross efficiency evaluation method," European Journal of Operational Research, Elsevier, vol. 197(2), pages 722-730, September.
    4. Garry A. Gelade & Paul Dobson, 2007. "Predicting the Comparative Strengths of National Football Teams," Social Science Quarterly, Southwestern Social Science Association, vol. 88(1), pages 244-258, March.
    5. Calzada-Infante, Laura & Lozano, Sebastián, 2016. "Analysing Olympic Games through dominance networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1215-1230.
    6. Alexandre Marinho & Simone de Souza Cardoso & Vivian Vicente de Almeida, 2009. "Avaliação da Eficiência Técnica dos Países nos Jogos Olímpicos de Pequim – 2008," Discussion Papers 1394, Instituto de Pesquisa Econômica Aplicada - IPEA.
    7. Li, Yongjun & Lei, Xiyang & Dai, Qianzhi & Liang, Liang, 2015. "Performance evaluation of participating nations at the 2012 London Summer Olympics by a two-stage data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 243(3), pages 964-973.
    8. Yang, Min & Li, Yong Jun & Liang, Liang, 2015. "A generalized equilibrium efficient frontier data envelopment analysis approach for evaluating DMUs with fixed-sum outputs," European Journal of Operational Research, Elsevier, vol. 246(1), pages 209-217.
    9. Plácido Moreno & Sebastián Lozano, 2014. "A network DEA assessment of team efficiency in the NBA," Annals of Operations Research, Springer, vol. 214(1), pages 99-124, March.
    10. Josef Jablonsky, 2018. "Ranking of countries in sporting events using two-stage data envelopment analysis models: a case of Summer Olympic Games 2016," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 951-966, December.
    11. Vagenas, George & Vlachokyriakou, Eleni, 2012. "Olympic medals and demo-economic factors: Novel predictors, the ex-host effect, the exact role of team size, and the “population-GDP” model revisited," Sport Management Review, Elsevier, vol. 15(2), pages 211-217.
    12. Alexandre de Cássio Rodrigues & Carlos Alberto Gonçalves & Tiago Silveira Gontijo, 2019. "A two-stage DEA model to evaluate the efficiency of countries at the Rio 2016 Olympic Games," Economics Bulletin, AccessEcon, vol. 39(2), pages 1538-1545.
    13. Sekitani, Kazuyuki & Zhao, Yu, 2021. "Performance benchmarking of achievements in the Olympics: An application of Data Envelopment Analysis with restricted multipliers," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1202-1212.
    14. Leeds Eva Marikova & Leeds Michael A., 2012. "Gold, Silver, and Bronze: Determining National Success in Men’s and Women’s Summer Olympic Events," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 232(3), pages 279-292, June.
    15. Lewis, Herbert F. & Lock, Kathleen A. & Sexton, Thomas R., 2009. "Organizational capability, efficiency, and effectiveness in Major League Baseball: 1901-2002," European Journal of Operational Research, Elsevier, vol. 197(2), pages 731-740, September.
    16. D Zhang & X Li & W Meng & W Liu, 2009. "Measuring the performance of nations at the Olympic Games using DEA models with different preferences," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 983-990, July.
    17. Debnath Roma Mitra & Malhotra Ashish, 2015. "Measuring Efficiency of Nations in Multi Sport Events: A case of Commonwealth Games XIX," Naše gospodarstvo/Our economy, Sciendo, vol. 61(1), pages 25-36, March.
    18. M. Flegl & L. A. Andrade, 2018. "Measuring countries’ performance at the Summer Olympic Games in Rio 2016," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 823-846, November.
    19. Xiyang Lei & Yongjun Li & Qiwei Xie & Liang Liang, 2015. "Measuring Olympics achievements based on a parallel DEA approach," Annals of Operations Research, Springer, vol. 226(1), pages 379-396, March.
    20. Li, Yongjun & Liu, Jin & Ang, Sheng & Yang, Feng, 2021. "Performance evaluation of two-stage network structures with fixed-sum outputs: An application to the 2018winter Olympic Games," Omega, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:36:y:2008:i:6:p:933-940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.