IDEAS home Printed from https://ideas.repec.org/a/prg/jnlcfu/v2013y2013i4id363p145-163.html
   My bibliography  Save this article

Using R in Finance
[Využití R v oblasti financí]

Author

Listed:
  • Jiří Sedláček

Abstract

R is open source software environment (and language) for statistical computing and graphics. Different surveys are showing R's popularity has increased substantially in recent years, especially in academic environment. Therefore, at the beginning main advantages and comparison to commercial statistical software are presented. Second, selection of the best interface for given tasks is important. In each category (GUI or editors/IDEs) several product are compared. Data structure for time series in base installation is suitable for regular time series only. Therefore, several other data structures in different packages are compared: almost all support irregular time series, but differ in other attributes (often important for financial data). In following section, analysis of some well-known packages for financial data (quantmod, RQuantLib, Rmetrics collection and others) are performed. At the beginning of the last section, different ways of downloading data from Internet are shortly presented. Then the relevant sources of financial data are more deeply investigated (in particular web Quandl and corresponding Quandl package for R). Czech projects for open data (still in initial phase) are also shortly described.

Suggested Citation

  • Jiří Sedláček, 2013. "Using R in Finance [Využití R v oblasti financí]," Český finanční a účetní časopis, Prague University of Economics and Business, vol. 2013(4), pages 145-163.
  • Handle: RePEc:prg:jnlcfu:v:2013:y:2013:i:4:id:363:p:145-163
    DOI: 10.18267/j.cfuc.363
    as

    Download full text from publisher

    File URL: http://cfuc.vse.cz/doi/10.18267/j.cfuc.363.html
    Download Restriction: free of charge

    File URL: http://cfuc.vse.cz/doi/10.18267/j.cfuc.363.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.18267/j.cfuc.363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeileis, Achim & Grothendieck, Gabor, 2005. "zoo: S3 Infrastructure for Regular and Irregular Time Series," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i06).
    2. Fox, John, 2005. "The R Commander: A Basic-Statistics Graphical User Interface to R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i09).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bašta, Milan & Helman, Karel, 2013. "Scale-specific importance of weather variables for explanation of variations of electricity consumption: The case of Prague, Czech Republic," Energy Economics, Elsevier, vol. 40(C), pages 503-514.
    2. Stéphanie C. Schai-Braun & Christine Kowalczyk & Erich Klansek & Klaus Hackländer, 2019. "Estimating Sustainable Harvest Rates for European Hare ( Lepus Europaeus ) Populations," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    3. Jacob Dice & Mallick Hossain & David Rodziewicz, 2024. "Flood Risk Exposures and Mortgage-Backed Security Asset Performance and Risk Sharing," Research Working Paper RWP 24-05, Federal Reserve Bank of Kansas City.
    4. Melchior, Cristiane & Zanini, Roselaine Ruviaro & Guerra, Renata Rojas & Rockenbach, Dinei A., 2021. "Forecasting Brazilian mortality rates due to occupational accidents using autoregressive moving average approaches," International Journal of Forecasting, Elsevier, vol. 37(2), pages 825-837.
    5. Malte Willmes & Katherine M Ransom & Levi S Lewis & Christian T Denney & Justin J G Glessner & James A Hobbs, 2018. "IsoFishR: An application for reproducible data reduction and analysis of strontium isotope ratios (87Sr/86Sr) obtained via laser-ablation MC-ICP-MS," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-15, September.
    6. Mirko Seithe & Lena Calahorrano, 2014. "Analysing Party Preferences Using Google Trends," CESifo Working Paper Series 4631, CESifo.
    7. Ohana-Levi, Noa & Ben-Gal, Alon & Munitz, Sarel & Netzer, Yishai, 2022. "Grapevine crop evapotranspiration and crop coefficient forecasting using linear and non-linear multiple regression models," Agricultural Water Management, Elsevier, vol. 262(C).
    8. Massimo Albanese, 2022. "Community Enterprises: Snapshots from Italy," European Journal of Economics and Business Studies Articles, Revistia Research and Publishing, vol. 8, ejes_v8_i.
    9. repec:jss:jstsof:28:i02 is not listed on IDEAS
    10. Peter Egger & Sergey Nigai, 2013. "Energy Reform in Switzerland," KOF Working papers 13-327, KOF Swiss Economic Institute, ETH Zurich.
    11. Waldhof, Gabi & Fritsche, Ulrich, 2023. "Understanding moral narratives as drivers of polarization about genetically engineered crops," WiSo-HH Working Paper Series 78, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
    12. Rödiger, Stefan & Friedrichsmeier, Thomas & Kapat, Prasenjit & Michalke, Meik, 2012. "RKWard: A Comprehensive Graphical User Interface and Integrated Development Environment for Statistical Analysis with R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 49(i09).
    13. Ben Teune & Carl Woods & Alice Sweeting & Mathew Inness & Sam Robertson, 2022. "A method to inform team sport training activity duration with change point analysis," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-11, March.
    14. Konsta Karttunen & Divyesh Patel & Jihan Xia & Liangru Fei & Kimmo Palin & Lauri Aaltonen & Biswajyoti Sahu, 2023. "Transposable elements as tissue-specific enhancers in cancers of endodermal lineage," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    15. Raquel Martins Lana & Maíra Moreira Morais & Tiago França Melo de Lima & Tiago Garcia de Senna Carneiro & Lucas Martins Stolerman & Jefferson Pereira Caldas dos Santos & José Joaquín Carvajal Cortés &, 2018. "Assessment of a trap based Aedes aegypti surveillance program using mathematical modeling," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-16, January.
    16. Nicholas John Tierney & Dianne Cook & Tania Prvan, 2020. "brolgar: An R package to BRowse Over Longitudinal Data Graphically and Analytically in R," Monash Econometrics and Business Statistics Working Papers 43/20, Monash University, Department of Econometrics and Business Statistics.
    17. Kowarik, Alexander & Meraner, Angelika & Templ, Matthias & Schopfhauser, Daniel, 2014. "Seasonal Adjustment with the R Packages x12 and x12GUI," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i02).
    18. Michael Berlemann & Julia Freese & Sven Knoth, 2020. "Dating the start of the US house price bubble: an application of statistical process control," Empirical Economics, Springer, vol. 58(5), pages 2287-2307, May.
    19. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    20. Judith M. Ament & Robin Freeman & Chris Carbone & Anna Vassall & Charlotte Watts, 2020. "An Empirical Analysis of Synergies and Tradeoffs between Sustainable Development Goals," Sustainability, MDPI, vol. 12(20), pages 1-12, October.
    21. Anota, Amélie & Savina, Marion & Bascoul-Mollevi, Caroline & Bonnetain, Franck, 2017. "QoLR: An R Package for the Longitudinal Analysis of Health-Related Quality of Life in Oncology," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i12).

    More about this item

    Keywords

    Statistics; Finance; R; Program; Data structures; Packages; Data import; Statistika; Datové struktury; Balíčky; Import dat;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prg:jnlcfu:v:2013:y:2013:i:4:id:363:p:145-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Vojir (email available below). General contact details of provider: https://edirc.repec.org/data/uevsecz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.