IDEAS home Printed from https://ideas.repec.org/a/prg/jnlaip/v2021y2021i1id149p108-120.html
   My bibliography  Save this article

Effective Designing of Order Picking Systems Using Dynamic Simulation

Author

Listed:
  • Petra Kašparová
  • Jakub Dyntar

Abstract

In this article, we describe the use of dynamic simulation when designing an effective system for order picking within a distribution warehouse. The simulation model was created in the Witness software environment for discrete dynamic simulation and is a modification of a general simulation model of material flows in supplier systems. Using the example of a batch system for picking orders in a drugstore goods warehouse, we discuss the possibilities of using a general simulation model of material flows as an effective framework for the development of system support for warehouse processes using WMS. The simulation model is based on the possibility of dividing any material flow in the supply system into a finite number of movements with the possibility of using one of the sources and fulfilment of certain conditions. In order to achieve the required optimisation of the order picking system, which depends, in particular, on the unknown duration of goods collection at the picking location, and on the duration of goods sorting in consolidation, the "what-if" analysis has been used as a tool to measure the impact of uncertainty of one or more variables entering the model on the uncertainty of output variables. The study showed that minimisation of the number of physical elements in the model leads to a significantly higher speed of its operation. By means of dynamic simulation, it is possible to test a large number of variants of the picking system layout in a relatively short time and minimise the risk of erroneous decisions associated with the implementation of a suitable WMS.

Suggested Citation

  • Petra Kašparová & Jakub Dyntar, 2021. "Effective Designing of Order Picking Systems Using Dynamic Simulation," Acta Informatica Pragensia, Prague University of Economics and Business, vol. 2021(1), pages 108-120.
  • Handle: RePEc:prg:jnlaip:v:2021:y:2021:i:1:id:149:p:108-120
    DOI: 10.18267/j.aip.149
    as

    Download full text from publisher

    File URL: http://aip.vse.cz/doi/10.18267/j.aip.149.html
    Download Restriction: free of charge

    File URL: http://aip.vse.cz/doi/10.18267/j.aip.149.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.18267/j.aip.149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yugang Yu & René B.M. Koster & Xiaolong Guo, 2015. "Class-Based Storage with a Finite Number of Items: Using More Classes is not Always Better," Production and Operations Management, Production and Operations Management Society, vol. 24(8), pages 1235-1247, August.
    2. Kevin Gue & Russell Meller, 2009. "Aisle configurations for unit-load warehouses," IISE Transactions, Taylor & Francis Journals, vol. 41(3), pages 171-182.
    3. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2007. "Research on warehouse operation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 177(1), pages 1-21, February.
    4. Yann Ruberg & André Scholz, 2016. "A Mathematical Programming Formulation for the Single-Picker Routing Problem in a Multi-Block Layout," FEMM Working Papers 160002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    5. Scholz, André & Henn, Sebastian & Stuhlmann, Meike & Wäscher, Gerhard, 2016. "A new mathematical programming formulation for the Single-Picker Routing Problem," European Journal of Operational Research, Elsevier, vol. 253(1), pages 68-84.
    6. Yu, Mengfei & de Koster, René B.M., 2009. "The impact of order batching and picking area zoning on order picking system performance," European Journal of Operational Research, Elsevier, vol. 198(2), pages 480-490, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Gils, Teun & Ramaekers, Katrien & Braekers, Kris & Depaire, Benoît & Caris, An, 2018. "Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions," International Journal of Production Economics, Elsevier, vol. 197(C), pages 243-261.
    2. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    3. Pardo, Eduardo G. & Gil-Borrás, Sergio & Alonso-Ayuso, Antonio & Duarte, Abraham, 2024. "Order batching problems: Taxonomy and literature review," European Journal of Operational Research, Elsevier, vol. 313(1), pages 1-24.
    4. Masae, Makusee & Glock, Christoph H. & Vichitkunakorn, Panupong, 2021. "A method for efficiently routing order pickers in the leaf warehouse," International Journal of Production Economics, Elsevier, vol. 234(C).
    5. Silva, Allyson & Roodbergen, Kees Jan & Coelho, Leandro C. & Darvish, Maryam, 2022. "Estimating optimal ABC zone sizes in manual warehouses," International Journal of Production Economics, Elsevier, vol. 252(C).
    6. Heiko Diefenbach & Simon Emde & Christoph H. Glock & Eric H. Grosse, 2022. "New solution procedures for the order picker routing problem in U-shaped pick areas with a movable depot," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 535-573, June.
    7. Ang, Marcus & Lim, Yun Fong, 2019. "How to optimize storage classes in a unit-load warehouse," European Journal of Operational Research, Elsevier, vol. 278(1), pages 186-201.
    8. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2020. "Integrating storage location and order picking problems in warehouse planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    9. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2024. "Improving order picking efficiency through storage assignment optimization in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 316(2), pages 718-732.
    10. Katrin Heßler & Stefan Irnich, 2023. "Exact Solution of the Single Picker Routing Problem with Scattered Storage," Working Papers 2303, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    11. Mowrey, Corinne H. & Parikh, Pratik J., 2014. "Mixed-width aisle configurations for order picking in distribution centers," European Journal of Operational Research, Elsevier, vol. 232(1), pages 87-97.
    12. Derhami, Shahab & Smith, Jeffrey S. & Gue, Kevin R., 2020. "A simulation-based optimization approach to design optimal layouts for block stacking warehouses," International Journal of Production Economics, Elsevier, vol. 223(C).
    13. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    14. Bortolini, Marco & Faccio, Maurizio & Gamberi, Mauro & Manzini, Riccardo, 2015. "Diagonal cross-aisles in unit load warehouses to increase handling performance," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 838-849.
    15. Çelik, Melih & Archetti, Claudia & Süral, Haldun, 2022. "Inventory routing in a warehouse: The storage replenishment routing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1117-1132.
    16. Giannikas, Vaggelis & Lu, Wenrong & Robertson, Brian & McFarlane, Duncan, 2017. "An interventionist strategy for warehouse order picking: Evidence from two case studies," International Journal of Production Economics, Elsevier, vol. 189(C), pages 63-76.
    17. Fangyu Chen & Yongchang Wei & Hongwei Wang, 2018. "A heuristic based batching and assigning method for online customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 640-685, December.
    18. Gue, Kevin R. & Ivanović, Goran & Meller, Russell D., 2012. "A unit-load warehouse with multiple pickup and deposit points and non-traditional aisles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 795-806.
    19. Guo, Xiaolong & Chen, Ran & Du, Shaofu & Yu, Yugang, 2021. "Storage assignment for newly arrived items in forward picking areas with limited open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    20. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prg:jnlaip:v:2021:y:2021:i:1:id:149:p:108-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Vojir (email available below). General contact details of provider: https://edirc.repec.org/data/uevsecz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.