IDEAS home Printed from https://ideas.repec.org/p/mag/wpaper/160002.html
   My bibliography  Save this paper

A Mathematical Programming Formulation for the Single-Picker Routing Problem in a Multi-Block Layout

Author

Listed:
  • Yann Ruberg

    (Faculty of Economics and Management, Otto-von-Guericke University Magdeburg)

  • André Scholz

    (Faculty of Economics and Management, Otto-von-Guericke University Magdeburg)

Abstract

The Single-Picker Routing Problem (SPRP) arises in warehouses when items have to be retrieved from their storage locations in order to satisfy a given demand. It deals with the determination of the sequence according to which the requested items have to be picked in the picking area of the warehouse and the identification of the corresponding paths to be travelled by human operators (order pickers). The picking area typically possesses a block layout, i.e. the items are located in parallel picking aisles, and the order pickers can only change over to another picking aisle at certain positions by means of so-called cross aisles. Using this special structure, Scholz et al. (2016) developed a model formulation whose size is independent of the number of locations to be visited. They presented the model for a single-block layout and briefly described how it can be extended to the case of multiple blocks. However, by extending this formulation, the number of variables and constraints is multiplied by the number of blocks and, therefore, the model is not suitable for solving the SPRP in warehouses composed of several blocks. In this paper, the extension to multiple blocks is considered and it is pointed out how to drastically reduce the size of the formulation. Depending on the storage locations of the requested items, the number of variables can be decreased by up to 96%.

Suggested Citation

  • Yann Ruberg & André Scholz, 2016. "A Mathematical Programming Formulation for the Single-Picker Routing Problem in a Multi-Block Layout," FEMM Working Papers 160002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
  • Handle: RePEc:mag:wpaper:160002
    as

    Download full text from publisher

    File URL: http://www.fww.ovgu.de/fww_media/femm/femm_2016/2016_02.pdf
    File Function: First version, 2011
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scholz, André & Henn, Sebastian & Stuhlmann, Meike & Wäscher, Gerhard, 2016. "A new mathematical programming formulation for the Single-Picker Routing Problem," European Journal of Operational Research, Elsevier, vol. 253(1), pages 68-84.
    2. H. Donald Ratliff & Arnon S. Rosenthal, 1983. "Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(3), pages 507-521, June.
    3. Roodbergen, Kees Jan & de Koster, Rene, 2001. "Routing order pickers in a warehouse with a middle aisle," European Journal of Operational Research, Elsevier, vol. 133(1), pages 32-43, August.
    4. Letchford, Adam N. & Nasiri, Saeideh D. & Theis, Dirk Oliver, 2013. "Compact formulations of the Steiner Traveling Salesman Problem and related problems," European Journal of Operational Research, Elsevier, vol. 228(1), pages 83-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saylam, Serhat & Çelik, Melih & Süral, Haldun, 2024. "Arc routing based compact formulations for picker routing in single and two block parallel aisle warehouses," European Journal of Operational Research, Elsevier, vol. 313(1), pages 225-240.
    2. Petra Kašparová & Jakub Dyntar, 2021. "Effective Designing of Order Picking Systems Using Dynamic Simulation," Acta Informatica Pragensia, Prague University of Economics and Business, vol. 2021(1), pages 108-120.
    3. Çelik, Melih & Archetti, Claudia & Süral, Haldun, 2022. "Inventory routing in a warehouse: The storage replenishment routing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1117-1132.
    4. André Scholz, 2016. "An Exact Solution Approach to the Single-Picker Routing Problem in Warehouses with an Arbitrary Block Layout," FEMM Working Papers 160006, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    5. Silva, Allyson & Roodbergen, Kees Jan & Coelho, Leandro C. & Darvish, Maryam, 2022. "Estimating optimal ABC zone sizes in manual warehouses," International Journal of Production Economics, Elsevier, vol. 252(C).
    6. Su, Yixuan & Zhu, Xi & Yuan, Jinlong & Teo, Kok Lay & Li, Meixia & Li, Chunfa, 2023. "An extensible multi-block layout warehouse routing optimization model," European Journal of Operational Research, Elsevier, vol. 305(1), pages 222-239.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valle, Cristiano Arbex & Beasley, John E. & da Cunha, Alexandre Salles, 2017. "Optimally solving the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 817-834.
    2. Scholz, André & Schubert, Daniel & Wäscher, Gerhard, 2017. "Order picking with multiple pickers and due dates – Simultaneous solution of Order Batching, Batch Assignment and Sequencing, and Picker Routing Problems," European Journal of Operational Research, Elsevier, vol. 263(2), pages 461-478.
    3. Neves-Moreira, Fábio & Amorim, Pedro, 2024. "Learning efficient in-store picking strategies to reduce customer encounters in omnichannel retail," International Journal of Production Economics, Elsevier, vol. 267(C).
    4. Saylam, Serhat & Çelik, Melih & Süral, Haldun, 2024. "Arc routing based compact formulations for picker routing in single and two block parallel aisle warehouses," European Journal of Operational Research, Elsevier, vol. 313(1), pages 225-240.
    5. André Scholz, 2016. "An Exact Solution Approach to the Single-Picker Routing Problem in Warehouses with an Arbitrary Block Layout," FEMM Working Papers 160006, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    6. Su, Yixuan & Zhu, Xi & Yuan, Jinlong & Teo, Kok Lay & Li, Meixia & Li, Chunfa, 2023. "An extensible multi-block layout warehouse routing optimization model," European Journal of Operational Research, Elsevier, vol. 305(1), pages 222-239.
    7. André Scholz & Daniel Schubert & Gerhard Wäscher, 2016. "Order picking with multiple pickers and due dates – Simultaneous solution of order batching, batch assignment and sequencing, and picker routing problems," FEMM Working Papers 160005, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    8. Cambazard, Hadrien & Catusse, Nicolas, 2018. "Fixed-parameter algorithms for rectilinear Steiner tree and rectilinear traveling salesman problem in the plane," European Journal of Operational Research, Elsevier, vol. 270(2), pages 419-429.
    9. Sebastian Henn & André Scholz & Meike Stuhlmann & Gerhard Wäscher, 2015. "A New Mathematical Programming Formulation for the Single-Picker Routing Problem in a Single-Block Layout," FEMM Working Papers 150005, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    10. Atashi Khoei, Arsham & Süral, Haldun & Tural, Mustafa Kemal, 2023. "Energy minimizing order picker forklift routing problem," European Journal of Operational Research, Elsevier, vol. 307(2), pages 604-626.
    11. Çelik, Melih & Archetti, Claudia & Süral, Haldun, 2022. "Inventory routing in a warehouse: The storage replenishment routing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1117-1132.
    12. Diefenbach, Heiko & Grosse, Eric H. & Glock, Christoph H., 2024. "Human-and-cost-centric storage assignment optimization in picker-to-parts warehouses," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1049-1068.
    13. Rajabighamchi, Farzaneh & van Hoesel, Stan & Defryn, Christof, 2023. "Graph reduction for the planar Travelling Salesman Problem," Research Memorandum 004, Maastricht University, Graduate School of Business and Economics (GSBE).
    14. Lu, Wenrong & McFarlane, Duncan & Giannikas, Vaggelis & Zhang, Quan, 2016. "An algorithm for dynamic order-picking in warehouse operations," European Journal of Operational Research, Elsevier, vol. 248(1), pages 107-122.
    15. Briant, Olivier & Cambazard, Hadrien & Cattaruzza, Diego & Catusse, Nicolas & Ladier, Anne-Laure & Ogier, Maxime, 2020. "An efficient and general approach for the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 285(2), pages 497-512.
    16. Öztürkoğlu, Ömer & Hoser, Deniz, 2019. "A discrete cross aisle design model for order-picking warehouses," European Journal of Operational Research, Elsevier, vol. 275(2), pages 411-430.
    17. Masae, Makusee & Glock, Christoph H. & Vichitkunakorn, Panupong, 2021. "A method for efficiently routing order pickers in the leaf warehouse," International Journal of Production Economics, Elsevier, vol. 234(C).
    18. Dominik Goeke & Michael Schneider, 2021. "Modeling Single-Picker Routing Problems in Classical and Modern Warehouses," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 436-451, May.
    19. Arbex Valle, Cristiano & Beasley, John E, 2020. "Order batching using an approximation for the distance travelled by pickers," European Journal of Operational Research, Elsevier, vol. 284(2), pages 460-484.
    20. Heiko Diefenbach & Simon Emde & Christoph H. Glock & Eric H. Grosse, 2022. "New solution procedures for the order picker routing problem in U-shaped pick areas with a movable depot," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 535-573, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mag:wpaper:160002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Guido Henkel (email available below). General contact details of provider: https://edirc.repec.org/data/fwmagde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.