IDEAS home Printed from https://ideas.repec.org/a/prg/jnlaip/v2019y2019i1id123p18-37.html
   My bibliography  Save this article

Data Mining from the Banking Sector´s Data
[Dolovanie dát z bankového sektora]

Author

Listed:
  • Anna Biceková
  • Ľudmila Pusztová

Abstract

This paper deals with the prediction of company bankruptcies and defines how this undesirable state can be prevented. Currently, these methods include modern approaches from the area of data mining that can help companies in many ways. In a practical application of data mining methods for predicting the future state of a company, financial indicators of Polish companies were used. In the analyses, we used algorithms suitable for bankruptcy prediction - decision trees that provide a simple interpretation of results. In some experiments, we also used attribute selection methods, LASSO, or the PCA method. The workflow is governed by the CRISP-DM methodology, which describes the important steps needed for different analytical tasks. Part of the article is an analysis of the current state, which presents solutions to this problem suggested by other authors. After evaluating all models, we concluded that the C5.0 algorithm is capable of predicting a company's bankruptcy or non-bankruptcy with 97.07 % accuracy, without the use of attribute selection methods.

Suggested Citation

  • Anna Biceková & Ľudmila Pusztová, 2019. "Data Mining from the Banking Sector´s Data [Dolovanie dát z bankového sektora]," Acta Informatica Pragensia, Prague University of Economics and Business, vol. 2019(1), pages 18-37.
  • Handle: RePEc:prg:jnlaip:v:2019:y:2019:i:1:id:123:p:18-37
    DOI: 10.18267/j.aip.123
    as

    Download full text from publisher

    File URL: http://aip.vse.cz/doi/10.18267/j.aip.123.html
    Download Restriction: free of charge

    File URL: http://aip.vse.cz/doi/10.18267/j.aip.123.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.18267/j.aip.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dwyer, Gerald P. & Tkac, Paula, 2009. "The financial crisis of 2008 in fixed-income markets," Journal of International Money and Finance, Elsevier, vol. 28(8), pages 1293-1316, December.
    2. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    3. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    4. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew Smith & Francisco Alvarez, 2022. "Predicting Firm-Level Bankruptcy in the Spanish Economy Using Extreme Gradient Boosting," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 263-295, January.
    2. Marco Bisogno, 2012. "The Accessibility Of The Italian Bankruptcy Procedures: An Empirical Analysis," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 2(2), pages 1-24, December.
    3. Stephan Höcht & Rudi Zagst, 2010. "Pricing credit derivatives under stochastic recovery in a hybrid model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(3), pages 254-276, May.
    4. Antonio Davila & George Foster & Xiaobin He & Carlos Shimizu, 2015. "The rise and fall of startups: Creation and destruction of revenue and jobs by young companies," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 6-35, February.
    5. Barth, Mary E. & Beaver, William H. & Landsman, Wayne R., 2001. "The relevance of the value relevance literature for financial accounting standard setting: another view," Journal of Accounting and Economics, Elsevier, vol. 31(1-3), pages 77-104, September.
    6. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    7. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    8. Sanghoon Lee & Keunho Choi & Donghee Yoo, 2020. "Predicting the Insolvency of SMEs Using Technological Feasibility Assessment Information and Data Mining Techniques," Sustainability, MDPI, vol. 12(23), pages 1-17, November.
    9. Suzan Hol, 2006. "The influence of the business cycle on bankruptcy probability," Discussion Papers 466, Statistics Norway, Research Department.
    10. Pavol Durana & Lucia Michalkova & Andrej Privara & Josef Marousek & Milos Tumpach, 2021. "Does the life cycle affect earnings management and bankruptcy?," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 425-461, June.
    11. Yiannis Anagnostopoulos, 2016. "Risk Pricing in Emerging Economies: Credit Scoring and Private Banking in Iran," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 5(1), pages 51-72, January.
    12. Ralph W. Adler, 1996. "Exploring the Seeds of Organisational Decline," Australian Accounting Review, CPA Australia, vol. 6(12), pages 24-36, September.
    13. Simon Cornée, 2014. "Soft Information and Default Prediction in Cooperative and Social Banks," Journal of Entrepreneurial and Organizational Diversity, European Research Institute on Cooperative and Social Enterprises, vol. 3(1), pages 89-103, June.
    14. Frieda Rikkers & Andre E. Thibeault, 2009. "A Structural form Default Prediction Model for SMEs, Evidence from the Dutch Market," Multinational Finance Journal, Multinational Finance Journal, vol. 13(3-4), pages 229-264, September.
    15. Xavier Brédart & Eric Séverin & David Veganzones, 2021. "Human resources and corporate failure prediction modeling: Evidence from Belgium," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1325-1341, November.
    16. Hunter, John & Isachenkova, Natalia, 2006. "Aggregate economy risk and company failure: An examination of UK quoted firms in the early 1990s," Journal of Policy Modeling, Elsevier, vol. 28(8), pages 911-919, November.
    17. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    18. Ke Wang & Darrell Duffie, 2004. "Multi-Period Corporate Failure Prediction With Stochastic Covariates," Econometric Society 2004 Far Eastern Meetings 747, Econometric Society.
    19. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
    20. Sun, Lili & Shenoy, Prakash P., 2007. "Using Bayesian networks for bankruptcy prediction: Some methodological issues," European Journal of Operational Research, Elsevier, vol. 180(2), pages 738-753, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prg:jnlaip:v:2019:y:2019:i:1:id:123:p:18-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Vojir (email available below). General contact details of provider: https://edirc.repec.org/data/uevsecz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.