IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0263299.html
   My bibliography  Save this article

Using system dynamics modelling to assess the economic efficiency of innovations in the public sector - a systematic review

Author

Listed:
  • Nidhee Jadeja
  • Nina J Zhu
  • Reda M Lebcir
  • Franco Sassi
  • Alison Holmes
  • Raheelah Ahmad

Abstract

Background: Decision-makers for public policy are increasingly utilising systems approaches such as system dynamics (SD) modelling, which test alternative interventions or policies for their potential impact while accounting for complexity. These approaches, however, have not consistently included an economic efficiency analysis dimension. This systematic review aims to examine how, and in what ways, system dynamics modelling approaches incorporate economic efficiency analyses to inform decision-making on innovations (improvements in products, services, or processes) in the public sector, with a particular interest in health. Methods and findings: Relevant studies (n = 29) were identified through a systematic search and screening of four electronic databases and backward citation search, and analysed for key characteristics and themes related to the analytical methods applied. Economic efficiency analysis approaches within SD broadly fell into two categories: as embedded sub-models or as cost calculations based on the outputs of the SD model. Embdedded sub-models within a dynamic SD framework can reveal a clear allocation of costs and benefits to periods of time, whereas cost calculations based on the SD model outputs can be useful for high-level resource allocation decisions. Conclusions: This systematic review reveals that SD modelling is not currently used to its full potential to evaluate the technical or allocative efficiency of public sector innovations, particularly in health. The limited reporting on the experience or methodological challenges of applying allocated efficiency analyses with SD, particularly with dynamic embedded models, hampers common learning lessons to draw from and build on. Further application and comprehensive reporting of this approach would be welcome to develop the methodology further.

Suggested Citation

  • Nidhee Jadeja & Nina J Zhu & Reda M Lebcir & Franco Sassi & Alison Holmes & Raheelah Ahmad, 2022. "Using system dynamics modelling to assess the economic efficiency of innovations in the public sector - a systematic review," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
  • Handle: RePEc:plo:pone00:0263299
    DOI: 10.1371/journal.pone.0263299
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263299
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0263299&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0263299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shih, Yi-Hsuan & Tseng, Chao-Heng, 2014. "Cost-benefit analysis of sustainable energy development using life-cycle co-benefits assessment and the system dynamics approach," Applied Energy, Elsevier, vol. 119(C), pages 57-66.
    2. Gault, Fred, 2018. "Defining and measuring innovation in all sectors of the economy," Research Policy, Elsevier, vol. 47(3), pages 617-622.
    3. Smith, Peter C. & van Ackere, Ann, 2002. "A note on the integration of system dynamics and economic models," Journal of Economic Dynamics and Control, Elsevier, vol. 26(1), pages 1-10, January.
    4. Paul Windrum, 2008. "Innovation and Entrepreneurship in Public Services," Chapters, in: Paul Windrum & Per Koch (ed.), Innovation in Public Sector Services, chapter 1, Edward Elgar Publishing.
    5. John Pastor Ansah & Keith Low Sheng Hng & Salman Ahmad & Cheryl Goh, 2021. "Evaluating the impact of upstream and downstream interventions on chronic kidney disease and dialysis care: a simulation analysis," System Dynamics Review, System Dynamics Society, vol. 37(1), pages 32-58, January.
    6. Fontoura, Wlisses Bonelá & Chaves, Gisele de Lorena Diniz & Ribeiro, Glaydston Mattos, 2019. "The Brazilian urban mobility policy: The impact in São Paulo transport system using system dynamics," Transport Policy, Elsevier, vol. 73(C), pages 51-61.
    7. Homer, J.B. & Hirsch, G.B., 2006. "System dynamics modeling for public health: Background and opportunities," American Journal of Public Health, American Public Health Association, vol. 96(3), pages 452-458.
    8. Jeremy Tejada & Julie Ivy & Russell King & James Wilson & Matthew Ballan & Michael Kay & Kathleen Diehl & Bonnie Yankaskas, 2014. "Combined DES/SD model of breast cancer screening for older women, II: screening-and-treatment simulation," IISE Transactions, Taylor & Francis Journals, vol. 46(7), pages 707-727.
    9. Zhikun Ding & Wenyan Gong & Shenghan Li & Zezhou Wu, 2018. "System Dynamics versus Agent-Based Modeling: A Review of Complexity Simulation in Construction Waste Management," Sustainability, MDPI, vol. 10(7), pages 1-13, July.
    10. Radboud J. Duintjer Tebbens & Kimberly M. Thompson, 2009. "Priority Shifting and the Dynamics of Managing Eradicable Infectious Diseases," Management Science, INFORMS, vol. 55(4), pages 650-663, April.
    11. Negar Darabi & Niyousha Hosseinichimeh, 2020. "System dynamics modeling in health and medicine: a systematic literature review," System Dynamics Review, System Dynamics Society, vol. 36(1), pages 29-73, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David C. Lane & Jim Duggan, 2020. "Addressing public health and security challenges with system dynamics," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 867-874, November.
    2. van Ackere, Ann & Schulz, Peter J., 2020. "Explaining vaccination decisions: A system dynamics model of the interaction between epidemiological and behavioural factors," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    3. Anaely Aguiar, 2020. "The role of systematic reviews in the system dynamics modelling process," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 892-895, November.
    4. Mohammad Reza Davahli & Waldemar Karwowski & Redha Taiar, 2020. "A System Dynamics Simulation Applied to Healthcare: A Systematic Review," IJERPH, MDPI, vol. 17(16), pages 1-27, August.
    5. Arundel, Anthony & Bloch, Carter & Ferguson, Barry, 2019. "Advancing innovation in the public sector: Aligning innovation measurement with policy goals," Research Policy, Elsevier, vol. 48(3), pages 789-798.
    6. Karl M Rich & Matthew J Denwood & Alistair W Stott & Dominic J Mellor & Stuart W J Reid & George J Gunn, 2013. "Systems Approaches to Animal Disease Surveillance and Resource Allocation: Methodological Frameworks for Behavioral Analysis," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    7. Edward G. Anderson & David R. Keith & Jose Lopez, 2023. "Opportunities for system dynamics research in operations management for public policy," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1895-1920, June.
    8. Khairulbahri, Muhamad, 2021. "Lessons learned from three Southeast Asian countries during the COVID-19 pandemic," Journal of Policy Modeling, Elsevier, vol. 43(6), pages 1354-1364.
    9. Chih‐Tung Hsiao & Chun‐Cheng Chen & Lee‐Kai Lin & Chung‐Shu Liu, 2023. "A systems view of responding to the COVID‐19 pandemic: A causal loop model for Taiwan's approach," Systems Research and Behavioral Science, Wiley Blackwell, vol. 40(1), pages 194-206, January.
    10. Reda Lebcir & Rifat Atun, 2021. "Resources management impact on neonatal services performance in the United Kingdom: A system dynamics modelling approach," International Journal of Health Planning and Management, Wiley Blackwell, vol. 36(3), pages 793-812, May.
    11. John Pastor Ansah & Keith Low Sheng Hng & Salman Ahmad & Cheryl Goh, 2021. "Evaluating the impact of upstream and downstream interventions on chronic kidney disease and dialysis care: a simulation analysis," System Dynamics Review, System Dynamics Society, vol. 37(1), pages 32-58, January.
    12. Vecchio, Pasquale Del & Secundo, Giustina & Maruccia, Ylenia & Passiante, Giuseppina, 2019. "A system dynamic approach for the smart mobility of people: Implications in the age of big data," Technological Forecasting and Social Change, Elsevier, vol. 149(C).
    13. Noushin Islam & Malindu Sandanayake & Shobha Muthukumaran & Dimuth Navaratna, 2024. "Review on Sustainable Construction and Demolition Waste Management—Challenges and Research Prospects," Sustainability, MDPI, vol. 16(8), pages 1-30, April.
    14. Chang, Pao-Long & Ho, Shu-Ping & Hsu, Chiung-Wen, 2013. "Dynamic simulation of government subsidy policy effects on solar water heaters installation in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 385-396.
    15. Meimei Wang & Steffen Flessa, 2020. "Modelling Covid-19 under uncertainty: what can we expect?," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(5), pages 665-668, July.
    16. Baldwin, Carliss Y. & Bogers, Marcel L.A.M. & Kapoor, Rahul & West, Joel, 2024. "Focusing the ecosystem lens on innovation studies," Research Policy, Elsevier, vol. 53(3).
    17. Ladi Daodu & Prof. Dr. Amiya Bhaumik, 2024. "Impacts of Innovation and Business Analytics on the Performance of the Service Sector in Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 77-91, June.
    18. Jacek Skudlarski & Alina Burliai & Ruslan Mudrak & Ihor Smerteniuk, 2021. "Trends of Innovative Development of Agricultural Business in the Context of Climate Changes," Oblik i finansi, Institute of Accounting and Finance, issue 2, pages 136-146, June.
    19. Mardones, Cristian, 2021. "Ex-post evaluation and cost-benefit analysis of a heater replacement program implemented in southern Chile," Energy, Elsevier, vol. 227(C).
    20. Karen Minyard & Tina A. Smith & Richard Turner & Bobby Milstein & Lori Solomon, 2018. "Community and programmatic factors influencing effective use of system dynamic models," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 154-171, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0263299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.