IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0259875.html
   My bibliography  Save this article

Resource competition and technological diversity

Author

Listed:
  • Almaz Mustafin
  • Aliya Kantarbayeva

Abstract

The work develops and investigates a mathematical model for evolution of the technological structure of an economic system where different technologies compete for the common essential resources. The model is represented by a system of consumer–resource rate equations. Consumers are technologies formalized as populations of weakly differentiated firms producing a similar commodity with like average output. Firms are characterized by the Leontief–Liebig production function in stock-flow representation. Firms self-replicate with a rate proportional to production output of the respective technology and dissolve with a constant rate of decay. The resources are supplied to the system from outside and consumed by concerned technologies; the unutilized resource amounts are removed elsewhere. The inverse of a per firm break-even resource availability is proposed to serve as a measure for competitiveness towards a given resource. The necessary conditions for coexistence of different technologies are derived, according to which each contender must be a superior competitor for one specific resource and an inferior competitor for the others. The model yields a version of the principle of competitive exclusion: in a steady state, the number of competing technologies cannot exceed the number of limiting resources. Competitive outcomes (either dominance or coexistence) in the general system of multiple technologies feeding on multiple essential resources are shown to be predictable from knowledge of the resource-dependent consumption and growth rates of each technological population taken alone. The proposed model of exploitative competition with explicit resource dynamics enables more profound insight into the patterns of technological change as opposed to conventional mainstream models of innovation diffusion.

Suggested Citation

  • Almaz Mustafin & Aliya Kantarbayeva, 2021. "Resource competition and technological diversity," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-37, November.
  • Handle: RePEc:plo:pone00:0259875
    DOI: 10.1371/journal.pone.0259875
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259875
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0259875&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0259875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stoneman, P L, 1985. "Technological Diffusion : The Viewpoint of Economic Theory," The Warwick Economics Research Paper Series (TWERPS) 270, University of Warwick, Department of Economics.
    2. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    3. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berrin Aytac & S. Wu, 2013. "Characterization of demand for short life-cycle technology products," Annals of Operations Research, Springer, vol. 203(1), pages 255-277, March.
    2. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    3. Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
    4. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    5. Kivi, Antero & Smura, Timo & Töyli, Juuso, 2012. "Technology product evolution and the diffusion of new product features," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 107-126.
    6. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    7. Kurdgelashvili, Lado & Shih, Cheng-Hao & Yang, Fan & Garg, Mehul, 2019. "An empirical analysis of county-level residential PV adoption in California," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 321-333.
    8. Duan, Hong-Bo & Zhu, Lei & Fan, Ying, 2014. "A cross-country study on the relationship between diffusion of wind and photovoltaic solar technology," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 156-169.
    9. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    10. Dutta, Amitava & Puvvala, Abhinay & Roy, Rahul & Seetharaman, Priya, 2017. "Technology diffusion: Shift happens — The case of iOS and Android handsets," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 28-43.
    11. Guseo, Renato & Schuster, Reinhard, 2021. "Modelling dynamic market potential: Identifying hidden automata networks in the diffusion of pharmaceutical drugs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    12. Abedi, Vahideh Sadat, 2019. "Compartmental diffusion modeling: Describing customer heterogeneity & communication network to support decisions for new product introductions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    13. Ding, Fei & Liu, Yun, 2009. "A decision theoretical approach for diffusion promotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3572-3580.
    14. Carlos Pablo Sigüenza & Bernhard Steubing & Arnold Tukker & Glenn A. Aguilar‐Hernández, 2021. "The environmental and material implications of circular transitions: A diffusion and product‐life‐cycle‐based modeling framework," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 563-579, June.
    15. Xenikos, D.G. & Constantoudis, V., 2023. "Weibull dynamics and power-law diffusion of epidemics in small world 2D networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    16. Hongyi Chen & Turuna Seecharan & Chen Feng, 2024. "Promoting the Diffusion of Sustainable Innovations through Customer Education—A Case of the Cosmetic Industry," Sustainability, MDPI, vol. 16(6), pages 1-17, March.
    17. Palmer, J. & Sorda, G. & Madlener, R., 2015. "Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 106-131.
    18. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea," Applied Energy, Elsevier, vol. 197(C), pages 29-39.
    19. Oliver Schaer & Nikolaos Kourentzes & Robert Fildes, 2022. "Predictive competitive intelligence with prerelease online search traffic," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3823-3839, October.
    20. Hongmin Li, 2020. "Optimal Pricing Under Diffusion-Choice Models," Operations Research, INFORMS, vol. 68(1), pages 115-133, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0259875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.