IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0259255.html
   My bibliography  Save this article

Importance of natural land cover for plant species’ conservation: A nationwide study in The Netherlands

Author

Listed:
  • Kaixuan Pan
  • Merijn Moens
  • Leon Marshall
  • Ellen Cieraad
  • Geert R de Snoo
  • Koos Biesmeijer

Abstract

While shifts to high-intensity land cover have caused overwhelming biodiversity loss, it remains unclear how important natural land cover is to the occurrence, and thus the conservation, of different species groups. We used over 4 million plant species’ observations to evaluate the conservation importance of natural land cover by its association with the occurrence probability of 1 122 native and 403 exotic plant species at 1 km resolution by species distribution models. We found that 74.9% of native species, 83.9% of the threatened species and 77.1% rare species preferred landscapes with over 50% natural land cover, while these landscapes only accounted for 15.6% of all grids. Most species preferred natural areas with a mixture of forest and open areas rather than areas with completely open or forested nature. Compared to native species, exotic species preferred areas with lower natural land cover and the cover of natural open area, but they both preferred extremely high and low cover of natural forest area. Threatened and rare species preferred higher natural land cover, either cover of natural forest area or cover of natural open area than not threatened and common species, but rare species were also more likely to occur in landscapes with 0–25% cover of natural open area. Although more natural land cover in a landscape will not automatically result in more native species, because there is often a non-linear increase in species occurrence probability when going from 0% to 100% natural land cover, for conserving purposes, over 80% natural land cover should be kept in landscapes for conserving threatened and very rare species, and 60% natural land cover is the best for conserving common native species. Our results stress the importance of natural areas for plant species’ conservation. It also informs improvements to species conservation by increasing habitat diversity.

Suggested Citation

  • Kaixuan Pan & Merijn Moens & Leon Marshall & Ellen Cieraad & Geert R de Snoo & Koos Biesmeijer, 2021. "Importance of natural land cover for plant species’ conservation: A nationwide study in The Netherlands," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-25, November.
  • Handle: RePEc:plo:pone00:0259255
    DOI: 10.1371/journal.pone.0259255
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259255
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0259255&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0259255?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Theodore A. Kennedy & Shahid Naeem & Katherine M. Howe & Johannes M. H. Knops & David Tilman & Peter Reich, 2002. "Biodiversity as a barrier to ecological invasion," Nature, Nature, vol. 417(6889), pages 636-638, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph George Ray & Prasanthkumar Santhakumaran & Santhoshkumar Kookal, 2021. "Phytoplankton communities of eutrophic freshwater bodies (Kerala, India) in relation to the physicochemical water quality parameters," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 259-290, January.
    2. Zu-Xing Wang & Zheng-Sheng He & Wei-Ming He, 2021. "Nighttime climate warming enhances inhibitory effects of atmospheric nitrogen deposition on the success of invasive Solidago canadensis," Climatic Change, Springer, vol. 167(1), pages 1-15, July.
    3. Serra W. Buchanan & Megan Baskerville & Maren Oelbermann & Andrew M. Gordon & Naresh V. Thevathasan & Marney E. Isaac, 2020. "Plant Diversity and Agroecosystem Function in Riparian Agroforests: Providing Ecosystem Services and Land-Use Transition," Sustainability, MDPI, vol. 12(2), pages 1-12, January.
    4. Lu Wu & Xu-Wen Wang & Zining Tao & Tong Wang & Wenlong Zuo & Yu Zeng & Yang-Yu Liu & Lei Dai, 2024. "Data-driven prediction of colonization outcomes for complex microbial communities," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Pierre Dupraz & Karine Latouche & Nadine Turpin, 2007. "Programmes agri-environnementaux en présence d’effets de seuil," Cahiers d'Economie et Sociologie Rurales, INRA Department of Economics, vol. 82, pages 5-32.
    6. Fabio Bulleri & John F Bruno & Lisandro Benedetti-Cecchi, 2008. "Beyond Competition: Incorporating Positive Interactions between Species to Predict Ecosystem Invasibility," PLOS Biology, Public Library of Science, vol. 6(6), pages 1-5, June.
    7. Cai Cheng & Zekang Liu & Wei Song & Xue Chen & Zhijie Zhang & Bo Li & Mark Kleunen & Jihua Wu, 2024. "Biodiversity increases resistance of grasslands against plant invasions under multiple environmental changes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Gregor Gorkiewicz & Gerhard G Thallinger & Slave Trajanoski & Stefan Lackner & Gernot Stocker & Thomas Hinterleitner & Christian Gülly & Christoph Högenauer, 2013. "Alterations in the Colonic Microbiota in Response to Osmotic Diarrhea," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-17, February.
    9. Jinhui Wu & Haoxin Li & Huawei Wan & Yongcai Wang & Chenxi Sun & Hongmin Zhou, 2021. "Analyzing the Relationship between Animal Diversity and the Remote Sensing Vegetation Parameters: The Case of Xinjiang, China," Sustainability, MDPI, vol. 13(17), pages 1-17, September.
    10. Robert C. Cope & Joshua V. Ross & Talia A. Wittmann & Michael J. Watts & Phillip Cassey, 2019. "Predicting the Risk of Biological Invasions Using Environmental Similarity and Transport Network Connectedness," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 35-53, January.
    11. Villanueva, Maria Concepcion S. & Isumbisho, Mwapu & Kaningini, Boniface & Moreau, Jacques & Micha, Jean-Claude, 2008. "Modeling trophic interactions in Lake Kivu: What roles do exotics play?," Ecological Modelling, Elsevier, vol. 212(3), pages 422-438.
    12. Jiabu, Duojie & Li, Weide, 2023. "Impact of different invasion methods of invasive species on omnivorous food webs," Ecological Modelling, Elsevier, vol. 475(C).
    13. Simianer, H., 2005. "Decision making in livestock conservation," Ecological Economics, Elsevier, vol. 53(4), pages 559-572, June.
    14. Wen Lin & Guofa Zhou & Xinyue Cheng & Rumei Xu, 2007. "Fast Economic Development Accelerates Biological Invasions in China," PLOS ONE, Public Library of Science, vol. 2(11), pages 1-6, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0259255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.