IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0259156.html
   My bibliography  Save this article

Comprehensive marine substrate classification applied to Canada’s Pacific shelf

Author

Listed:
  • Edward J Gregr
  • Dana R Haggarty
  • Sarah C Davies
  • Cole Fields
  • Joanne Lessard

Abstract

Maps of bottom type are essential to the management of marine resources and biodiversity because of their foundational role in characterizing species’ habitats. They are also urgently needed as countries work to define marine protected areas. Current approaches are time consuming, focus largely on grain size, and tend to overlook shallow waters. Our random forest classification of almost 200,000 observations of bottom type is a timely alternative, providing maps of coastal substrate at a combination of resolution and extents not previously achieved. We correlated the observations with depth, depth-derivatives, and estimates of energy to predict marine substrate at 100 m resolution for Canada’s Pacific shelf, a study area of over 135,000 km2. We built five regional models with the same data at 20 m resolution. In addition to standard tests of model fit, we used three independent data sets to test model predictions. We also tested for regional, depth, and resolution effects. We guided our analysis by asking: 1) does weighting for prevalence improve model predictions? 2) does model resolution influence model performance? And 3) is model performance influenced by depth? All our models fit the build data well with true skill statistic (TSS) scores ranging from 0.56 to 0.64. Weighting models with class prevalence improved fit and the correspondence with known spatial features. Class-based metrics showed differences across both resolutions and spatial regions, indicating non-stationarity across these spatial categories. Predictive power was lower (TSS from 0.10 to 0.36) based on independent data evaluation. Model performance was also a function of depth and resolution, illustrating the challenge of accurately representing heterogeneity. Our work shows the value of regional analyses to assessing model stationarity and how independent data evaluation and the use of error metrics can improve understanding of model performance and sampling bias.

Suggested Citation

  • Edward J Gregr & Dana R Haggarty & Sarah C Davies & Cole Fields & Joanne Lessard, 2021. "Comprehensive marine substrate classification applied to Canada’s Pacific shelf," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-28, October.
  • Handle: RePEc:plo:pone00:0259156
    DOI: 10.1371/journal.pone.0259156
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259156
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0259156&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0259156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wright, Marvin N. & Ziegler, Andreas, 2017. "ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i01).
    2. David Stephens & Markus Diesing, 2015. "Towards Quantitative Spatial Models of Seabed Sediment Composition," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Backer, David & Billing, Trey, 2024. "Forecasting the prevalence of child acute malnutrition using environmental and conflict conditions as leading indicators," World Development, Elsevier, vol. 176(C).
    2. Mariana Oliveira & Luís Torgo & Vítor Santos Costa, 2021. "Evaluation Procedures for Forecasting with Spatiotemporal Data," Mathematics, MDPI, vol. 9(6), pages 1-27, March.
    3. Bokelmann, Björn & Lessmann, Stefan, 2024. "Improving uplift model evaluation on randomized controlled trial data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 691-707.
    4. Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
    5. Chakravorty, Bhaskar & Arulampalam, Wiji & Bhatiya, Apurav Yash & Imbert, Clément & Rathelot, Roland, 2024. "Can information about jobs improve the effectiveness of vocational training? Experimental evidence from India," Journal of Development Economics, Elsevier, vol. 169(C).
    6. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    7. Albert Stuart Reece & Gary Kenneth Hulse, 2022. "European Epidemiological Patterns of Cannabis- and Substance-Related Congenital Neurological Anomalies: Geospatiotemporal and Causal Inferential Study," IJERPH, MDPI, vol. 20(1), pages 1-35, December.
    8. Giorgos Foutzopoulos & Nikolaos Pandis & Michail Tsagris, 2024. "Predicting Full Retirement Attainment of NBA Players," Working Papers 2403, University of Crete, Department of Economics.
    9. Michael Parzinger & Lucia Hanfstaengl & Ferdinand Sigg & Uli Spindler & Ulrich Wellisch & Markus Wirnsberger, 2020. "Residual Analysis of Predictive Modelling Data for Automated Fault Detection in Building’s Heating, Ventilation and Air Conditioning Systems," Sustainability, MDPI, vol. 12(17), pages 1-18, August.
    10. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    11. Albert Stuart Reece & Gary Kenneth Hulse, 2022. "European Epidemiological Patterns of Cannabis- and Substance-Related Body Wall Congenital Anomalies: Geospatiotemporal and Causal Inferential Study," IJERPH, MDPI, vol. 19(15), pages 1-38, July.
    12. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    13. Marchetto, Elisa & Da Re, Daniele & Tordoni, Enrico & Bazzichetto, Manuele & Zannini, Piero & Celebrin, Simone & Chieffallo, Ludovico & Malavasi, Marco & Rocchini, Duccio, 2023. "Testing the effect of sample prevalence and sampling methods on probability- and favourability-based SDMs," Ecological Modelling, Elsevier, vol. 477(C).
    14. Jorge Luis Andrade & José Luis Valencia, 2022. "A Fuzzy Random Survival Forest for Predicting Lapses in Insurance Portfolios Containing Imprecise Data," Mathematics, MDPI, vol. 11(1), pages 1-16, December.
    15. Eeva-Katri Kumpula & Pauline Norris & Adam C Pomerleau, 2020. "Stocks of paracetamol products stored in urban New Zealand households: A cross-sectional study," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-11, June.
    16. Michael Bucker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2020. "Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring," Papers 2009.13384, arXiv.org.
    17. Luisetti, Tiziana & Turner, R. Kerry & Andrews, Julian E. & Jickells, Timothy D. & Kröger, Silke & Diesing, Markus & Paltriguera, Lucille & Johnson, Martin T. & Parker, Eleanor R. & Bakker, Dorothee C, 2019. "Quantifying and valuing carbon flows and stores in coastal and shelf ecosystems in the UK," Ecosystem Services, Elsevier, vol. 35(C), pages 67-76.
    18. Jian Lu & Raheel Ahmad & Thomas Nguyen & Jeffrey Cifello & Humza Hemani & Jiangyuan Li & Jinguo Chen & Siyi Li & Jing Wang & Achouak Achour & Joseph Chen & Meagan Colie & Ana Lustig & Christopher Dunn, 2022. "Heterogeneity and transcriptome changes of human CD8+ T cells across nine decades of life," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Timo Schulte & Tillmann Wurz & Oliver Groene & Sabine Bohnet-Joschko, 2023. "Big Data Analytics to Reduce Preventable Hospitalizations—Using Real-World Data to Predict Ambulatory Care-Sensitive Conditions," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    20. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0259156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.