IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0256997.html
   My bibliography  Save this article

Can co-authorship networks be used to predict author research impact? A machine-learning based analysis within the field of degenerative cervical myelopathy research

Author

Listed:
  • Noah Grodzinski
  • Ben Grodzinski
  • Benjamin M Davies

Abstract

Introduction: Degenerative Cervical Myelopathy (DCM) is a common and disabling condition, with a relatively modest research capacity. In order to accelerate knowledge discovery, the AO Spine RECODE-DCM project has recently established the top priorities for DCM research. Uptake of these priorities within the research community will require their effective dissemination, which can be supported by identifying key opinion leaders (KOLs). In this paper, we aim to identify KOLs using artificial intelligence. We produce and explore a DCM co-authorship network, to characterise researchers’ impact within the research field. Methods: Through a bibliometric analysis of 1674 scientific papers in the DCM field, a co-authorship network was created. For each author, statistics about their connections to the co-authorship network (and so the nature of their collaboration) were generated. Using these connectedness statistics, a neural network was used to predict H-Index for each author (as a proxy for research impact). The neural network was retrospectively validated on an unseen author set. Results: DCM research is regionally clustered, with strong collaboration across some international borders (e.g., North America) but not others (e.g., Western Europe). In retrospective validation, the neural network achieves a correlation coefficient of 0.86 (p

Suggested Citation

  • Noah Grodzinski & Ben Grodzinski & Benjamin M Davies, 2021. "Can co-authorship networks be used to predict author research impact? A machine-learning based analysis within the field of degenerative cervical myelopathy research," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-14, September.
  • Handle: RePEc:plo:pone00:0256997
    DOI: 10.1371/journal.pone.0256997
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256997
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0256997&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0256997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. E. Hirsch, 2010. "An index to quantify an individual’s scientific research output that takes into account the effect of multiple coauthorship," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(3), pages 741-754, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Xu & Zhigang Li & Rui Wang & Li Zhao, 2021. "Analysis of the Evolution of User Emotion and Opinion Leaders’ Information Dissemination Behavior in the Knowledge Q&A Community during COVID-19," IJERPH, MDPI, vol. 18(22), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Fernandez-Cano & Inés M. Fernández-Guerrero, 2017. "A multivariate model for evaluating emergency medicine journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 991-1003, February.
    2. Yingjin Song & Ruiyi Li & Guanyi Chen & Beibei Yan & Lei Zhong & Yuxin Wang & Yihang Li & Jinlei Li & Yingxiu Zhang, 2021. "Bibliometric Analysis of Current Status on Bioremediation of Petroleum Contaminated Soils during 2000–2019," IJERPH, MDPI, vol. 18(16), pages 1-20, August.
    3. Deming Lin & Tianhui Gong & Wenbin Liu & Martin Meyer, 2020. "An entropy-based measure for the evolution of h index research," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2283-2298, December.
    4. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
    5. Ash Mohammad Abbas, 2011. "Weighted indices for evaluating the quality of research with multiple authorship," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 107-131, July.
    6. Jiang Wu, 2013. "Geographical knowledge diffusion and spatial diversity citation rank," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 181-201, January.
    7. Daniele Checchi & Alberto Ciolfi & Gianni De Fraja & Irene Mazzotta & Stefano Verzillo, 2021. "Have you Read This? An Empirical Comparison of the British REF Peer Review and the Italian VQR Bibliometric Algorithm," Economica, London School of Economics and Political Science, vol. 88(352), pages 1107-1129, October.
    8. M. Ausloos, 2013. "A scientometrics law about co-authors and their ranking: the co-author core," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 895-909, June.
    9. Lathabai, Hiran H., 2020. "ψ-index: A new overall productivity index for actors of science and technology," Journal of Informetrics, Elsevier, vol. 14(4).
    10. Claudiu Herteliu & Marcel Ausloos & Bogdan Vasile Ileanu & Giulia Rotundo & Tudorel Andrei, 2017. "Quantitative and Qualitative Analysis of Editor Behavior through Potentially Coercive Citations," Publications, MDPI, vol. 5(2), pages 1-16, June.
    11. Serge Galam, 2011. "Tailor based allocations for multiple authorship: a fractional gh-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 365-379, October.
    12. Ausloos, Marcel, 2015. "Coherent measures of the impact of co-authors in peer review journals and in proceedings publications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 568-578.
    13. Liu, Yunmei & Yang, Liu & Chen, Min, 2021. "A new citation concept: Triangular citation in the literature," Journal of Informetrics, Elsevier, vol. 15(2).
    14. James C. Ryan, 2016. "A validation of the individual annual h-index (hIa): application of the hIa to a qualitatively and quantitatively different sample," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 577-590, October.
    15. Rotundo, Giulia, 2014. "Black–Scholes–Schrödinger–Zipf–Mandelbrot model framework for improving a study of the coauthor core score," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 296-301.
    16. Luca Cagliero & Paolo Garza & Mohammad Reza Kavoosifar & Elena Baralis, 2018. "Discovering cross-topic collaborations among researchers by exploiting weighted association rules," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1273-1301, August.
    17. Du Jian & Tang Xiaoli, 2013. "Perceptions of author order versus contribution among researchers with different professional ranks and the potential of harmonic counts for encouraging ethical co-authorship practices," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 277-295, July.
    18. Hassan Bougrine, 2014. "Subfield effects on the core of coauthors," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1047-1064, February.
    19. Tingcan Ma & Gui-Fang Wang & Ke Dong & Mukun Cao, 2012. "The Journal’s Integrated Impact Index: a new indicator for journal evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 649-658, February.
    20. Jiancheng Guan & Yan Yan & Jingjing Zhang, 2015. "How do collaborative features affect scientific output? Evidences from wind power field," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 333-355, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0256997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.