IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0256793.html
   My bibliography  Save this article

Designing and validating a Markov model for hospital-based addiction consult service impact on 12-month drug and non-drug related mortality

Author

Listed:
  • Caroline A King
  • Honora Englander
  • P Todd Korthuis
  • Joshua A Barocas
  • K John McConnell
  • Cynthia D Morris
  • Ryan Cook

Abstract

Introduction: Addiction consult services (ACS) engage hospitalized patients with opioid use disorder (OUD) in care and help meet their goals for substance use treatment. Little is known about how ACS affect mortality for patients with OUD. The objective of this study was to design and validate a model that estimates the impact of ACS care on 12-month mortality among hospitalized patients with OUD. Methods: We developed a Markov model of referral to an ACS, post-discharge engagement in SUD care, and 12-month drug-related and non-drug related mortality among hospitalized patients with OUD. We populated our model using Oregon Medicaid data and validated it using international modeling standards. Results: There were 6,654 patients with OUD hospitalized from April 2015 through December 2017. There were 114 (1.7%) drug-related deaths and 408 (6.1%) non-drug related deaths at 12 months. Bayesian logistic regression models estimated four percent (4%, 95% CI = 2%, 6%) of patients were referred to an ACS. Of those, 47% (95% CI = 37%, 57%) engaged in post-discharge OUD care, versus 20% not referred to an ACS (95% CI = 16%, 24%). The risk of drug-related death at 12 months among patients in post-discharge OUD care was 3% (95% CI = 0%, 7%) versus 6% not in care (95% CI = 2%, 10%). The risk of non-drug related death was 7% (95% CI = 1%, 13%) among patients in post-discharge OUD treatment, versus 9% not in care (95% CI = 5%, 13%). We validated our model by evaluating its predictive, external, internal, face and cross validity. Discussion: Our novel Markov model reflects trajectories of care and survival for patients hospitalized with OUD. This model can be used to evaluate the impact of other clinical and policy changes to improve patient survival.

Suggested Citation

  • Caroline A King & Honora Englander & P Todd Korthuis & Joshua A Barocas & K John McConnell & Cynthia D Morris & Ryan Cook, 2021. "Designing and validating a Markov model for hospital-based addiction consult service impact on 12-month drug and non-drug related mortality," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-14, September.
  • Handle: RePEc:plo:pone00:0256793
    DOI: 10.1371/journal.pone.0256793
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256793
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0256793&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0256793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. McNeil, Ryan & Small, Will & Wood, Evan & Kerr, Thomas, 2014. "Hospitals as a ‘risk environment’: An ethno-epidemiological study of voluntary and involuntary discharge from hospital against medical advice among people who inject drugs," Social Science & Medicine, Elsevier, vol. 105(C), pages 59-66.
    3. Michael J. Hanmer & Kerem Ozan Kalkan, 2013. "Behind the Curve: Clarifying the Best Approach to Calculating Predicted Probabilities and Marginal Effects from Limited Dependent Variable Models," American Journal of Political Science, John Wiley & Sons, vol. 57(1), pages 263-277, January.
    4. Jones, C.M. & Campopiano, M. & Baldwin, G. & McCance-Katz, E., 2015. "National and state treatment need and capacity for opioid agonist medication-assisted treatment," American Journal of Public Health, American Public Health Association, vol. 105(8), pages 55-63.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Plümper & Eric Neumayer & Katharina Gabriela Pfaff, 2021. "The strategy of protest against Covid‐19 containment policies in Germany," Social Science Quarterly, Southwestern Social Science Association, vol. 102(5), pages 2236-2250, September.
    2. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    3. Sakaue, Katsuki, 2018. "Informal fee charge and school choice under a free primary education policy: Panel data evidence from rural Uganda," International Journal of Educational Development, Elsevier, vol. 62(C), pages 112-127.
    4. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    5. Ellen Bouchery & Judith Dey, "undated". "Substance Use Disorder Workforce," Mathematica Policy Research Reports 47d4d14a7a32485eba249dfb3, Mathematica Policy Research.
    6. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    7. Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," MPRA Paper 105011, University Library of Munich, Germany.
    8. Katherine Sawyer & Kathleen Gallagher Cunningham & William Reed, 2017. "The Role of External Support in Civil War Termination," Journal of Conflict Resolution, Peace Science Society (International), vol. 61(6), pages 1174-1202, July.
    9. van Kesteren Erik-Jan & Bergkamp Tom, 2023. "Bayesian analysis of Formula One race results: disentangling driver skill and constructor advantage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 19(4), pages 273-293, December.
    10. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    11. Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.
    12. Kuschnig, Nikolas, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Paper Series 318, WU Vienna University of Economics and Business.
    13. Deniz Aksoy & David Carlson, 2022. "Electoral support and militants’ targeting strategies," Journal of Peace Research, Peace Research Institute Oslo, vol. 59(2), pages 229-241, March.
    14. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.
    15. D. Fouskakis & G. Petrakos & I. Rotous, 2020. "A Bayesian longitudinal model for quantifying students’ preferences regarding teaching quality indicators," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 255-270, August.
    16. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    17. Jonas Moss & Riccardo De Bin, 2023. "Modelling publication bias and p‐hacking," Biometrics, The International Biometric Society, vol. 79(1), pages 319-331, March.
    18. Jayme E. Walters & Aubrey E. Jones & Aaron R. Brown & Dorothy Wallis, 2022. "Impacts of the COVID-19 Pandemic on a Rural Opioid Support Services Program," IJERPH, MDPI, vol. 19(18), pages 1-12, September.
    19. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    20. David M. Phillippo & Sofia Dias & A. E. Ades & Mark Belger & Alan Brnabic & Alexander Schacht & Daniel Saure & Zbigniew Kadziola & Nicky J. Welton, 2020. "Multilevel network meta‐regression for population‐adjusted treatment comparisons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1189-1210, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0256793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.