IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0250948.html
   My bibliography  Save this article

A study on ship collision conflict prediction in the Taiwan Strait using the EMD-based LSSVM method

Author

Listed:
  • Tian Chai
  • Han Xue

Abstract

Ship collision accidents are the primary threat to traffic safety in the sea. Collision accidents can cause casualties and environmental pollution. The collision risk is a major indicator for navigators and surveillance operators to judge the collision danger between meeting ships. The number of collision accidents per unit time in a certain water area can be considered to describe the regional collision risk However, historical ship collision accidents have contingencies, small sample sizes and weak regularities; hence, ship collision conflicts can be used as a substitute for ship collision accidents in characterizing the maritime traffic safety situation and have become an important part of methods that quantitatively study the traffic safety problem and its countermeasures. In this work, an EMD-QPSO-LSSVM approach, which is a hybrid of empirical mode decomposition (EMD) and quantum-behaved particle swarm optimization (QPSO) optimized least squares support vector machine (LSSVM) model, is proposed to forecast ship collision conflicts. First, original ship collision conflict time series are decomposed into a collection of intrinsic mode functions (IMFs) and a residue with EMD. Second, both the IMF components and residue are applied to establish the corresponding LSSVM models, where the key parameters of the LSSVM are optimized by QPSO algorithm. Then, each subseries is predicted with the corresponding LSSVM. Finally, the prediction values of the original ship collision conflict datasets are calculated by the sum of the forecasting values of each subseries. The prediction results of the proposed method is compared with GM, Lasso regression method, EMD-ENN, and the predicted results indicate that the proposed method is efficient and can be used for the ship collision conflict prediction.

Suggested Citation

  • Tian Chai & Han Xue, 2021. "A study on ship collision conflict prediction in the Taiwan Strait using the EMD-based LSSVM method," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-16, May.
  • Handle: RePEc:plo:pone00:0250948
    DOI: 10.1371/journal.pone.0250948
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250948
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0250948&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0250948?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yang & Sun, Xukai & Chen, Jihong & Cheng, Cheng, 2021. "Spatial patterns and characteristics of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Wang, Lei & Liu, Qing & Dong, Shiyu & Guedes Soares, C., 2022. "Selection of countermeasure portfolio for shipping safety with consideration of investment risk aversion," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    5. Chen, Weiyi & Zhang, Limao, 2021. "Resilience assessment of regional areas against earthquakes using multi-source information fusion," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    7. Fu, Shanshan & Yu, Yuerong & Chen, Jihong & Xi, Yongtao & Zhang, Mingyang, 2022. "A framework for quantitative analysis of the causation of grounding accidents in arctic shipping," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    8. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2024. "A framework for ship abnormal behaviour detection and classification using AIS data," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    9. Zhang, Mingyang & Kujala, Pentti & Hirdaris, Spyros, 2022. "A machine learning method for the evaluation of ship grounding risk in real operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    10. Qiuwen Wang & Hu Zhang & Puxin Zhu, 2023. "Using Nuclear Energy for Maritime Decarbonization and Related Environmental Challenges: Existing Regulatory Shortcomings and Improvements," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    11. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Yang, Zaili, 2023. "Maritime traffic clustering to capture high-risk multi-ship encounters in complex waters," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Liang, Maohan & Li, Huanhuan & Liu, Ryan Wen & Lam, Jasmine Siu Lee & Yang, Zaili, 2024. "PiracyAnalyzer: Spatial temporal patterns analysis of global piracy incidents," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    13. Murray, Brian & Perera, Lokukaluge Prasad, 2021. "An AIS-based deep learning framework for regional ship behavior prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Wang, Likun & Huang, Ruiling & Shi, Wenming & Zhang, Caiyun, 2021. "Domino effect in marine accidents: Evidence from temporal association rules," Transport Policy, Elsevier, vol. 103(C), pages 236-244.
    15. Lan, He & Ma, Xiaoxue & Ma, Laihao & Qiao, Weiliang, 2023. "Pattern investigation of total loss maritime accidents based on association rule mining," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0250948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.