IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0250399.html
   My bibliography  Save this article

Spatial distribution of rural population using mixed geographically weighted regression: Evidence from Jiangxi Province in China

Author

Listed:
  • Liguo Zhang
  • Langping Leng
  • Yongming Zeng
  • Xi Lin
  • Su Chen

Abstract

On the basis of the spatial panel data of 2000, 2005, 2010, and 2015, this study uses a mixed geographically weighted regression model to explore the spatial distribution characteristics and influencing factors of the rural (permanent) population in Jiangxi Province, China. Results show that residents in the county area have a significant spatial positive autocorrelation, especially in the lake and mountain areas and the global Moran’ I index is more than 0.05. The influence of social and economic factors presents spatial homogeneity. The effect of urbanization and per capita disposable income is negative, whereas that of agricultural output value and rural electricity consumption is positive. The influence of climate factors presents spatial heterogeneity. The influence coefficient of rainfall in 2015 ranges from [-0.061, 0.133], which has a negative effect on the southwest mountain areas and a positive effect on the northeast lake areas., The influence coefficient of temperature in 2015 ranges from [-0.110, 0.094], which has a positive effect on the southwest mountain areas and a negative effect on the northeast lake areas. The influence coefficients of wind speed and relative humidity range from [-0.090, 0.153] and [-0.069, 0.130] in 2015 respectively, which further reinforce this effect. Therefore, scholars should pay attention to the universal adaptability of economic and social factors. Moreover, they should consider the spatial difference of climatic factors to promote urbanization following the local conditions. Finally, policymakers and concerned non-governmental institutions should fully understand the sensitivity of the rural population in underdeveloped mountain areas to climate factors to promote their rational distribution.

Suggested Citation

  • Liguo Zhang & Langping Leng & Yongming Zeng & Xi Lin & Su Chen, 2021. "Spatial distribution of rural population using mixed geographically weighted regression: Evidence from Jiangxi Province in China," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-15, April.
  • Handle: RePEc:plo:pone00:0250399
    DOI: 10.1371/journal.pone.0250399
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250399
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0250399&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0250399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chaogui Kang & Yu Liu & Xiujun Ma & Lun Wu, 2012. "Towards Estimating Urban Population Distributions from Mobile Call Data," Journal of Urban Technology, Taylor & Francis Journals, vol. 19(4), pages 3-21, October.
    2. Liu, Yansui, 2018. "Introduction to land use and rural sustainability in China," Land Use Policy, Elsevier, vol. 74(C), pages 1-4.
    3. Barbier, Edward B. & Hochard, Jacob P., 2018. "Poverty, rural population distribution and climate change," Environment and Development Economics, Cambridge University Press, vol. 23(3), pages 234-256, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liguo Zhang & Xi Lin & Langping Leng & Yongming Zeng, 2021. "Spatial distribution of rural population from a climate perspective: Evidence from Jiangxi Province in China," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-14, March.
    2. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    3. Jianglin Lu & Keqiang Wang & Hongmei Liu, 2022. "Residents’ Selection Behavior of Compensation Schemes for Construction Land Reduction: Empirical Evidence from Questionnaires in Shanghai, China," Land, MDPI, vol. 12(1), pages 1-29, December.
    4. Lü, Da & Gao, Guangyao & Lü, Yihe & Xiao, Feiyan & Fu, Bojie, 2020. "Detailed land use transition quantification matters for smart land management in drylands: An in-depth analysis in Northwest China," Land Use Policy, Elsevier, vol. 90(C).
    5. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    6. Qiu, Bingwen & Li, Haiwen & Tang, Zhenghong & Chen, Chongcheng & Berry, Joe, 2020. "How cropland losses shaped by unbalanced urbanization process?," Land Use Policy, Elsevier, vol. 96(C).
    7. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    8. Wang, Bo & Li, Fan & Feng, Shuyi & Shen, Tong, 2020. "Transfer of development rights, farmland preservation, and economic growth: a case study of Chongqing’s land quotas trading program," Land Use Policy, Elsevier, vol. 95(C).
    9. Chi, Yuan & Liu, Dahai & Wang, Jing & Wang, Enkang, 2020. "Human negative, positive, and net influences on an estuarine area with intensive human activity based on land covers and ecological indices: An empirical study in Chongming Island, China," Land Use Policy, Elsevier, vol. 99(C).
    10. Xinhui Feng & Yan Li & Lu Zhang & Chuyu Xia & Er Yu & Jiayu Yang, 2022. "Carbon Metabolism in Urban “Production–Living–Ecological” Space Based on Ecological Network Analysis," Land, MDPI, vol. 11(9), pages 1-22, August.
    11. Xu, Tingting & Gao, Jay & Li, Yuhua, 2019. "Machine learning-assisted evaluation of land use policies and plans in a rapidly urbanizing district in Chongqing, China," Land Use Policy, Elsevier, vol. 87(C).
    12. Yin, Xu & Wang, Jing & Li, Yurui & Feng, Zhiming & Wang, Qianyi, 2021. "Are small towns really inefficient? A data envelopment analysis of sampled towns in Jiangsu province, China," Land Use Policy, Elsevier, vol. 109(C).
    13. Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    14. Liu, Yansui & Zhou, Yang, 2021. "Territory spatial planning and national governance system in China," Land Use Policy, Elsevier, vol. 102(C).
    15. Antonín Vaishar & Milada Šťastná, 2019. "Sustainable Development of a Peripheral Mountain Region on the State Border: Case Study of Moravské Kopanice Microregion (Moravia)," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    16. Li, Jintao & Dong, Haoran & Li, Shaoxing, 2024. "Economic development and optimal allocation of land use in ecological emigration area in China," Land Use Policy, Elsevier, vol. 142(C).
    17. Pai Wang & Mengna Qi & Yajia Liang & Xuebing Ling & Yan Song, 2019. "Examining the Relationship between Environmentally Friendly Land Use and Rural Revitalization Using a Coupling Analysis: A Case Study of Hainan Province, China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    18. Xinxin Fu & Xiaofeng Wang & Jitao Zhou & Jiahao Ma, 2021. "Optimizing the Production-Living-Ecological Space for Reducing the Ecosystem Services Deficit," Land, MDPI, vol. 10(10), pages 1-17, September.
    19. Yu, Zhenning & She, Shuoqi & Xia, Chuyu & Luo, Jiaojiao, 2023. "How to solve the dilemma of China’s land fallow policy: Application of voluntary bidding mode in the Yangtze River Delta of China," Land Use Policy, Elsevier, vol. 125(C).
    20. Xia, Min & Zhang, Yanyuan & Zhang, Zihong & Liu, Jingjie & Ou, Weixin & Zou, Wei, 2020. "Modeling agricultural land use change in a rapid urbanizing town: Linking the decisions of government, peasant households and enterprises," Land Use Policy, Elsevier, vol. 90(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0250399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.