IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0246120.html
   My bibliography  Save this article

Variational-LSTM autoencoder to forecast the spread of coronavirus across the globe

Author

Listed:
  • Mohamed R Ibrahim
  • James Haworth
  • Aldo Lipani
  • Nilufer Aslam
  • Tao Cheng
  • Nicola Christie

Abstract

Modelling the spread of coronavirus globally while learning trends at global and country levels remains crucial for tackling the pandemic. We introduce a novel variational-LSTM Autoencoder model to predict the spread of coronavirus for each country across the globe. This deep Spatio-temporal model does not only rely on historical data of the virus spread but also includes factors related to urban characteristics represented in locational and demographic data (such as population density, urban population, and fertility rate), an index that represents the governmental measures and response amid toward mitigating the outbreak (includes 13 measures such as: 1) school closing, 2) workplace closing, 3) cancelling public events, 4) close public transport, 5) public information campaigns, 6) restrictions on internal movements, 7) international travel controls, 8) fiscal measures, 9) monetary measures, 10) emergency investment in health care, 11) investment in vaccines, 12) virus testing framework, and 13) contact tracing). In addition, the introduced method learns to generate a graph to adjust the spatial dependences among different countries while forecasting the spread. We trained two models for short and long-term forecasts. The first one is trained to output one step in future with three previous timestamps of all features across the globe, whereas the second model is trained to output 10 steps in future. Overall, the trained models show high validation for forecasting the spread for each country for short and long-term forecasts, which makes the introduce method a useful tool to assist decision and policymaking for the different corners of the globe.

Suggested Citation

  • Mohamed R Ibrahim & James Haworth & Aldo Lipani & Nilufer Aslam & Tao Cheng & Nicola Christie, 2021. "Variational-LSTM autoencoder to forecast the spread of coronavirus across the globe," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-22, January.
  • Handle: RePEc:plo:pone00:0246120
    DOI: 10.1371/journal.pone.0246120
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246120
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0246120&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0246120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sheryl L. Chang & Nathan Harding & Cameron Zachreson & Oliver M. Cliff & Mikhail Prokopenko, 2020. "Modelling transmission and control of the COVID-19 pandemic in Australia," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    2. Alexis Akira Toda, 2020. "Susceptible-Infected-Recovered (SIR) Dynamics of COVID-19 and Economic Impact," Papers 2003.11221, arXiv.org, revised Mar 2020.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahed Abugabah & Farah Shahid, 2023. "Intelligent Health Care and Diseases Management System: Multi-Day-Ahead Predictions of COVID-19," Mathematics, MDPI, vol. 11(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    2. Altig, Dave & Baker, Scott & Barrero, Jose Maria & Bloom, Nicholas & Bunn, Philip & Chen, Scarlet & Davis, Steven J. & Leather, Julia & Meyer, Brent & Mihaylov, Emil & Mizen, Paul & Parker, Nicholas &, 2020. "Economic uncertainty before and during the COVID-19 pandemic," Journal of Public Economics, Elsevier, vol. 191(C).
    3. Gillis, Melissa & Urban, Ryley & Saif, Ahmed & Kamal, Noreen & Murphy, Matthew, 2021. "A simulation–optimization framework for optimizing response strategies to epidemics," Operations Research Perspectives, Elsevier, vol. 8(C).
    4. Antoine Mandel & Vipin Veetil, 2020. "The Economic Cost of COVID Lockdowns: An Out-of-Equilibrium Analysis," Economics of Disasters and Climate Change, Springer, vol. 4(3), pages 431-451, October.
    5. Harrison Hong & Neng Wang & Jinqiang Yang, 2020. "Implications of Stochastic Transmission Rates for Managing Pandemic Risks," NBER Working Papers 27218, National Bureau of Economic Research, Inc.
    6. Korolev, Ivan, 2021. "Identification and estimation of the SEIRD epidemic model for COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 63-85.
    7. Sander Heinsalu, 2020. "Infection arbitrage," Papers 2004.08701, arXiv.org, revised Apr 2020.
    8. Stefan Pollinger, 2023. "Optimal Contact Tracing and Social Distancing Policies to Suppress A New Infectious Disease," The Economic Journal, Royal Economic Society, vol. 133(654), pages 2483-2503.
    9. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.
    10. Garcia, Pablo & Jacquinot, Pascal & Lenarčič, Črt & Lozej, Matija & Mavromatis, Kostas, 2023. "Global models for a global pandemic: The impact of COVID-19 on small euro area economies," Journal of Macroeconomics, Elsevier, vol. 77(C).
    11. Hafiz Suliman Munawar & Sara Imran Khan & Zakria Qadir & Yusra Sajid Kiani & Abbas Z. Kouzani & M. A. Parvez Mahmud, 2021. "Insights into the Mobility Pattern of Australians during COVID-19," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    12. Marc Diederichs & Reyn van Ewijk & Ingo E. Isphording & Nico Pestel, 2022. "Schools under mandatory testing can mitigate the spread of SARS-CoV-2," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 119(26), pages 2201724119-, June.
    13. Federico, Salvatore & Ferrari, Giorgio, 2020. "Taming the Spread of an Epidemic by Lockdown Policies," Center for Mathematical Economics Working Papers 639, Center for Mathematical Economics, Bielefeld University.
    14. Thomas Kruse & Philipp Strack, 2020. "Optimal Control of an Epidemic through Social Distancing," Cowles Foundation Discussion Papers 2229R, Cowles Foundation for Research in Economics, Yale University, revised Jul 2020.
    15. Xu, Dafeng, 2021. "Physical mobility under stay-at-home orders: A comparative analysis of movement restrictions between the U.S. and Europe," Economics & Human Biology, Elsevier, vol. 40(C).
    16. Panarello, Demetrio & Tassinari, Giorgio, 2022. "One year of COVID-19 in Italy: are containment policies enough to shape the pandemic pattern?," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    17. Nagel, Kai & Rakow, Christian & Müller, Sebastian A., 2021. "Realistic agent-based simulation of infection dynamics and percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    18. Lee, Sokbae & Liao, Yuan & Seo, Myung Hwan & Shin, Youngki, 2021. "Sparse HP filter: Finding kinks in the COVID-19 contact rate," Journal of Econometrics, Elsevier, vol. 220(1), pages 158-180.
    19. Shah, Ya. & Liu, Yu. & Shah, Faiza & Shah, Fadia, 2020. "Challenges of small- and medium-sized businesses in Pakistan due to COVID-19 pandemic," R-Economy, Ural Federal University, Graduate School of Economics and Management, vol. 6(3), pages 222-226.
    20. Aspri, Andrea & Beretta, Elena & Gandolfi, Alberto & Wasmer, Etienne, 2021. "Mortality containment vs. Economics Opening: Optimal policies in a SEIARD model," Journal of Mathematical Economics, Elsevier, vol. 93(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0246120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.