IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0237417.html
   My bibliography  Save this article

Monitoring Italian COVID-19 spread by a forced SEIRD model

Author

Listed:
  • Elena Loli Piccolomini
  • Fabiana Zama

Abstract

Due to the recent evolution of the COVID-19 outbreak, the scientific community is making efforts to analyse models for understanding the present situation and for predicting future scenarios. In this paper, we propose a forced Susceptible-Exposed-Infected-Recovered-Dead (fSEIRD) differential model for the analysis and forecast of the COVID-19 spread in Italian regions, using the data from the Italian Protezione Civile (Italian Civil Protection Department) from 24/02/2020. In this study, we investigate an adaptation of fSEIRD by proposing two different piecewise time-dependent infection rate functions to fit the current epidemic data affected by progressive movement restriction policies put in place by the Italian government. The proposed models are flexible and can be quickly adapted to monitor various epidemic scenarios. Results on the regions of Lombardia and Emilia-Romagna confirm that the proposed models fit the data very accurately and make reliable predictions.

Suggested Citation

  • Elena Loli Piccolomini & Fabiana Zama, 2020. "Monitoring Italian COVID-19 spread by a forced SEIRD model," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-17, August.
  • Handle: RePEc:plo:pone00:0237417
    DOI: 10.1371/journal.pone.0237417
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237417
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0237417&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0237417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    2. Lucia Russo & Cleo Anastassopoulou & Athanasios Tsakris & Gennaro Nicola Bifulco & Emilio Fortunato Campana & Gerardo Toraldo & Constantinos Siettos, 2020. "Tracing day-zero and forecasting the COVID-19 outbreak in Lombardy, Italy: A compartmental modelling and numerical optimization approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuli, Francesco & Maugeri, Gabriele, 2023. "Economic Effects of Covid-19 and Non-Pharmaceutical Interventions: applying a SEIRD-Macro Model to Italy," MPRA Paper 118422, University Library of Munich, Germany.
    2. Petropoulos, Fotios & Makridakis, Spyros & Stylianou, Neophytos, 2022. "COVID-19: Forecasting confirmed cases and deaths with a simple time series model," International Journal of Forecasting, Elsevier, vol. 38(2), pages 439-452.
    3. Song, Jialu & Xie, Hujin & Gao, Bingbing & Zhong, Yongmin & Gu, Chengfan & Choi, Kup-Sze, 2021. "Maximum likelihood-based extended Kalman filter for COVID-19 prediction," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Giuli, Francesco & Maugeri, Gabriele, 2022. "Economic Effects of Covid-19 and Non-Pharmaceutical Interventions: applying a SEIRD-RBC Model to Italy," MPRA Paper 114673, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. František Božek & Irena Tušer, 2021. "Measures for Ensuring Sustainability during the Current Spreading of Coronaviruses in the Czech Republic," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    2. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    5. Pau Fonseca i Casas & Joan Garcia i Subirana & Víctor García i Carrasco & Xavier Pi i Palomés, 2021. "SARS-CoV-2 Spread Forecast Dynamic Model Validation through Digital Twin Approach, Catalonia Case Study," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    6. Song, Jialu & Xie, Hujin & Gao, Bingbing & Zhong, Yongmin & Gu, Chengfan & Choi, Kup-Sze, 2021. "Maximum likelihood-based extended Kalman filter for COVID-19 prediction," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Li, Shaoran & Linton, Oliver, 2021. "When will the Covid-19 pandemic peak?," Journal of Econometrics, Elsevier, vol. 220(1), pages 130-157.
    8. Mati, Sagiru, 2021. "Do as your neighbours do? Assessing the impact of lockdown and reopening on the active COVID-19 cases in Nigeria," Social Science & Medicine, Elsevier, vol. 270(C).
    9. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    10. Bhardwaj, Rashmi & Bangia, Aashima, 2020. "Data driven estimation of novel COVID-19 transmission risks through hybrid soft-computing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Dorn, Florian & Lange, Berit & Braml, Martin & Gstrein, David & Nyirenda, John L.Z. & Vanella, Patrizio & Winter, Joachim & Fuest, Clemens & Krause, Gérard, 2023. "The challenge of estimating the direct and indirect effects of COVID-19 interventions – Toward an integrated economic and epidemiological approach," Economics & Human Biology, Elsevier, vol. 49(C).
    12. Huang, Chiou-Jye & Shen, Yamin & Kuo, Ping-Huan & Chen, Yung-Hsiang, 2022. "Novel spatiotemporal feature extraction parallel deep neural network for forecasting confirmed cases of coronavirus disease 2019," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    13. Musa Ganaka Kubi & Son-Allah Mallaka Philemon & Olope Ganiu Ibrahim, 2020. "Forecasting the Confirmed Cases of COVID-19 in Selected West African Countries Using ARIMA Model Technique," International Journal of Research and Innovation in Applied Science, International Journal of Research and Innovation in Applied Science (IJRIAS), vol. 5(8), pages 141-144, August.
    14. Roberto Antonietti & Paolo Falbo & Fulvio Fontini, 2023. "The Wealth of Nations and the First Wave of COVID-19 Diffusion," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 9(1), pages 61-83, March.
    15. Umar Albalawi & Mohammed Mustafa, 2022. "Current Artificial Intelligence (AI) Techniques, Challenges, and Approaches in Controlling and Fighting COVID-19: A Review," IJERPH, MDPI, vol. 19(10), pages 1-24, May.
    16. Yiannakoulias, Nikolaos & Slavik, Catherine E. & Sturrock, Shelby L. & Darlington, J. Connor, 2020. "Open government data, uncertainty and coronavirus: An infodemiological case study," Social Science & Medicine, Elsevier, vol. 265(C).
    17. Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2020. "An Economic Model of Health-vs-Wealth Prioritization During COVID-19: Optimal Lockdown, Network Centrality, and Segregation," Working Papers 2009E Classification-E61,, University of Ottawa, Department of Economics.
    18. Masud M A & Md Hamidul Islam & Khondaker A. Mamun & Byul Nim Kim & Sangil Kim, 2020. "COVID-19 Transmission: Bangladesh Perspective," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    19. Han, Zhimin & Wang, Yi & Cao, Jinde, 2023. "Impact of contact heterogeneity on initial growth behavior of an epidemic: Complex network-based approach," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    20. Marco Gribaudo & Mauro Iacono & Daniele Manini, 2021. "COVID-19 Spatial Diffusion: A Markovian Agent-Based Model," Mathematics, MDPI, vol. 9(5), pages 1-12, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0237417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.