IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0235292.html
   My bibliography  Save this article

Has the manufacturing policy helped to promote the logistics industry?

Author

Listed:
  • Dan He
  • Jialiang Yang
  • Zhengming Wang
  • Wenchao Li

Abstract

The logistics industry is a derivative industry of manufacturing services extraposition. A variety of strategies to develop the manufacturing industry are important programs of action for China's manufacturing strategic power, and it is of great significance to promote the high-quality development of the logistics industry. This paper takes strong manufacturing provinces with the development of the logistics industry as the research object and applies network DEA measuring the production efficiency and service efficiency of the logistics industry from 2004 to 2017. This paper adopts the “Made in China 2025” strategy as a natural experiment and uses double difference to study the impact of manufacturing policies on the high-quality development of the logistics industry. The empirical results show that compared with the Reference group, the impact of the “Made in China 2025” strategy led to a significant increase in the production efficiency and service efficiency of the experimental group. The group-based test based on innovation type shows that independent innovation has a significant positive effect on the high-quality development of the logistics industry, which shows that from the perspective of technological innovation, independent innovation is the main path of the “Made in China 2025” strategy to promote the high-quality development of the logistics industry. This paper not only identifies the causal relationship between the “Made in China 2025” strategy and the high-quality development of the logistics industry but also helps clarify the mechanism of how manufacturing policies improve the high-quality development of the logistics industry, which has important implications for further promoting the combined development between manufacturing and logistics.

Suggested Citation

  • Dan He & Jialiang Yang & Zhengming Wang & Wenchao Li, 2020. "Has the manufacturing policy helped to promote the logistics industry?," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-21, July.
  • Handle: RePEc:plo:pone00:0235292
    DOI: 10.1371/journal.pone.0235292
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235292
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235292&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0235292?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jens Matthias Arnold & Beata Javorcik & Molly Lipscomb & Aaditya Mattoo, 2016. "Services Reform and Manufacturing Performance: Evidence from India," Economic Journal, Royal Economic Society, vol. 126(590), pages 1-39, February.
    2. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    3. Blyde, Juan & Molina, Danielken, 2015. "Logistic infrastructure and the international location of fragmented production," Journal of International Economics, Elsevier, vol. 95(2), pages 319-332.
    4. Sotiros, Dimitris & Koronakos, Gregory & Despotis, Dimitris K., 2019. "Dominance at the divisional efficiencies level in network DEA: The case of two-stage processes," Omega, Elsevier, vol. 85(C), pages 144-155.
    5. Hübler, Michael & Baumstark, Lavinia & Leimbach, Marian & Edenhofer, Ottmar & Bauer, Nico, 2012. "An integrated assessment model with endogenous growth," Ecological Economics, Elsevier, vol. 83(C), pages 118-131.
    6. Shanzi Ke & Ming He & Chenhua Yuan, 2014. "Synergy and Co-agglomeration of Producer Services and Manufacturing: A Panel Data Analysis of Chinese Cities," Regional Studies, Taylor & Francis Journals, vol. 48(11), pages 1829-1841, November.
    7. Qiong Yao & Liwen Huang & Mingli Li, 2019. "The effects of tech and non-tech innovation on brand equity in China: The role of institutional environments," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-24, May.
    8. Hyun-Ju Koh & Nadine Riedel, 2014. "Assessing the Localization Pattern of German Manufacturing and Service Industries: A Distance-based Approach," Regional Studies, Taylor & Francis Journals, vol. 48(5), pages 823-843, May.
    9. Aija Leiponen, 2012. "The benefits of R&D and breadth in innovation strategies: a comparison of Finnish service and manufacturing firms," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 21(5), pages 1255-1281, October.
    10. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Why have CO2 emissions increased in the transport sector in Asia ? underlying factors and policy options," Policy Research Working Paper Series 5098, The World Bank.
    11. Chu, Zhaofang & Feng, Bo & Lai, Fujun, 2018. "Logistics service innovation by third party logistics providers in China: Aligning guanxi and organizational structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 291-307.
    12. Walker, Guy & Manson, Alastair, 2014. "Telematics, urban freight logistics and low carbon road networks," Journal of Transport Geography, Elsevier, vol. 37(C), pages 74-81.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Mao & Yonglin Li & Deyi Xu & Yaqi Wu & Jinhua Cheng, 2022. "Spatial-Temporal Evolution of Total Factor Productivity in Logistics Industry of the Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    2. Patel, Pankaj C. & Ojha, Divesh & Naskar, Shankar, 2022. "The effect of firm efficiency on firm performance: Evidence from the Domestic Production Activities Deduction Act," International Journal of Production Economics, Elsevier, vol. 253(C).
    3. Heng Chen & Yan Zhang, 2022. "Regional Logistics Industry High-Quality Development Level Measurement, Dynamic Evolution, and Its Impact Path on Industrial Structure Optimization: Finding from China," Sustainability, MDPI, vol. 14(21), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    2. Masato Abe, 2011. "Achieving a sustainable automotive sector in Asia and the Pacific: Challenges and opportunities for the reduction of vehicle CO2 emissions," Working Papers 10811, Asia-Pacific Research and Training Network on Trade (ARTNeT), an initiative of UNESCAP and IDRC, Canada..
    3. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    4. Andreoni, V. & Galmarini, S., 2012. "European CO2 emission trends: A decomposition analysis for water and aviation transport sectors," Energy, Elsevier, vol. 45(1), pages 595-602.
    5. Manel Daldoul & Ahlem Dakhlaoui, 2018. "Using the LMDI Decomposition Approach to Analyze the Influencing Factors of Carbon Emissions in Tunisian Transportation Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 22-28.
    6. Robaina, Margarita & Neves, Ana, 2021. "Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe," Research in Transportation Economics, Elsevier, vol. 90(C).
    7. M'raihi, Rafaa & Mraihi, Talel & Harizi, Riadh & Taoufik Bouzidi, Mohamed, 2015. "Carbon emissions growth and road freight: Analysis of the influencing factors in Tunisia," Transport Policy, Elsevier, vol. 42(C), pages 121-129.
    8. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    9. Cai, Bofeng & Yang, Weishan & Cao, Dong & Liu, Lancui & Zhou, Ying & Zhang, Zhansheng, 2012. "Estimates of China's national and regional transport sector CO2 emissions in 2007," Energy Policy, Elsevier, vol. 41(C), pages 474-483.
    10. Paudel, Krishna P. & Timilsina, Govinda R., 2010. "Would There Be Surplus Grains for Biofuels? An Assessment of Agro-economic Factors and Biofuel Production Potential at the Global Level," Staff Papers 113125, Louisiana State University, Department of Agricultural Economics and Agribusiness.
    11. Anwar, Ahsan & Sharif, Arshian & Fatima, Saba & Ahmad, Paiman & Sinha, Avik & Khan, Syed Abdul Rehman & Jermsittiparsert, Kittisak, 2021. "The asymmetric effect of public private partnership investment on transport CO2 emission in China: Evidence from quantile ARDL approach," MPRA Paper 108160, University Library of Munich, Germany, revised 2021.
    12. Ben Abdallah, Khaled & Belloumi, Mounir & De Wolf, Daniel, 2015. "International comparisons of energy and environmental efficiency in the road transport sector," Energy, Elsevier, vol. 93(P2), pages 2087-2101.
    13. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    14. Geoffrey Udoka Nnadiri & Anthony S. F. Chiu & Jose Bienvenido Manuel Biona & Neil Stephen Lopez, 2021. "Comparison of Driving Forces to Increasing Traffic Flow and Transport Emissions in Philippine Regions: A Spatial Decomposition Study," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    15. Yang Song & Kevin R. Gurney, 2020. "The Relationship between On-Road FFCO 2 Emissions and Socio-Economic/Urban Form Factors for Global Cities: Significance, Robustness and Implications," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    16. Lee, Zhi Hua & Sethupathi, Sumathi & Lee, Keat Teong & Bhatia, Subhash & Mohamed, Abdul Rahman, 2013. "An overview on global warming in Southeast Asia: CO2 emission status, efforts done, and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 71-81.
    17. Fernando Ramos-Quintana & Efraín Tovar-Sánchez & Hugo Saldarriaga-Noreña & Héctor Sotelo-Nava & Juan Paulo Sánchez-Hernández & María-Luisa Castrejón-Godínez, 2019. "A CBR–AHP Hybrid Method to Support the Decision-Making Process in the Selection of Environmental Management Actions," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    18. Xue-Ting Jiang & Jie-Fang Dong & Xing-Min Wang & Rong-Rong Li, 2016. "The Multilevel Index Decomposition of Energy-Related Carbon Emission and Its Decoupling with Economic Growth in USA," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
    19. Suhaiza Zailani & Mohammad Iranmanesh & Sunghyup Sean Hyun & Mohd Helmi Ali, 2019. "Applying the Theory of Consumption Values to Explain Drivers’ Willingness to Pay for Biofuels," Sustainability, MDPI, vol. 11(3), pages 1-13, January.
    20. Zhang, Ming & Li, Huanan & Zhou, Min & Mu, Hailin, 2011. "Decomposition analysis of energy consumption in Chinese transportation sector," Applied Energy, Elsevier, vol. 88(6), pages 2279-2285, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0235292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.