IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5649-d276130.html
   My bibliography  Save this article

A CBR–AHP Hybrid Method to Support the Decision-Making Process in the Selection of Environmental Management Actions

Author

Listed:
  • Fernando Ramos-Quintana

    (Dirección General de Desarrollo Sustentable, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico)

  • Efraín Tovar-Sánchez

    (Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico)

  • Hugo Saldarriaga-Noreña

    (Centro de Investigaciones Químicas, Instituto de Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico)

  • Héctor Sotelo-Nava

    (Dirección General de Desarrollo Sustentable, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico)

  • Juan Paulo Sánchez-Hernández

    (Dirección de Informática, Electrónica y Telecomunicaciones, Universidad Politécnica de Estado de Morelos, Boulevard Cuauhnáhuac 566, Jiutepec, Morelos 62550, Mexico)

  • María-Luisa Castrejón-Godínez

    (Dirección General de Desarrollo Sustentable, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico)

Abstract

This paper proposes a hybrid method integrating case-based reasoning (CBR) and analytic hierarchy process (AHP) methods to reinforce the sustainable performance of an environmental management system. The CBR–AHP method aims to support the decision-making process to select environmental management actions (EMAs) aimed at reducing risky trends of the environmental state of a region. The CBR methods takes advantage of a set of situation–solution pairs called cases, which are stored in a memory and then retrieved as candidates to solve new problems. Situations in this work are represented by a set of risky trends of key environmental pathways (KEPs) related to CO 2 emissions, air quality, loss of vegetation cover, water availability, and solid waste, the combination of which damage the environmental state quality of a region. Meanwhile, solutions are represented by a set of EMAs. Similar situations to a given current situation are retrieved from the memory of cases, and then their solutions are combined through an adaptation mechanism, until the solution of the current problem is obtained. The AHP method is used to assign weights to environmental variables and to alternative solutions represented by EMAs. We used risky trends derived from real data related to the environmental states of a Mexican region to test the proposed CBR–AHP hybrid method. The results obtained provided insights into the potential of the CBR–AHP hybrid method to support the decision-making process to select EMAs aimed at reducing risky trends of current environmental states.

Suggested Citation

  • Fernando Ramos-Quintana & Efraín Tovar-Sánchez & Hugo Saldarriaga-Noreña & Héctor Sotelo-Nava & Juan Paulo Sánchez-Hernández & María-Luisa Castrejón-Godínez, 2019. "A CBR–AHP Hybrid Method to Support the Decision-Making Process in the Selection of Environmental Management Actions," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5649-:d:276130
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5649/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5649/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alix-Garcia, Jennifer Marie & de Janvry, Alain & Sadoulet, Elisabeth, 2004. "Payments for Environmental Services: To whom, where, and how much?," 2004 Annual meeting, August 1-4, Denver, CO 20421, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Maxim, Laura & Spangenberg, Joachim H. & O'Connor, Martin, 2009. "An analysis of risks for biodiversity under the DPSIR framework," Ecological Economics, Elsevier, vol. 69(1), pages 12-23, November.
    3. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    4. Fernando Ramos-Quintana & Héctor Sotelo-Nava & Hugo Saldarriaga-Noreña & Efraín Tovar-Sánchez, 2019. "Assessing the Environmental Quality Resulting from Damages to Human-Nature Interactions Caused by Population Increase: A Systems Thinking Approach," Sustainability, MDPI, vol. 11(7), pages 1-29, April.
    5. Chen, Serena H. & Jakeman, Anthony J. & Norton, John P., 2008. "Artificial Intelligence techniques: An introduction to their use for modelling environmental systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 379-400.
    6. Ho, William & Xu, Xiaowei & Dey, Prasanta K., 2010. "Multi-criteria decision making approaches for supplier evaluation and selection: A literature review," European Journal of Operational Research, Elsevier, vol. 202(1), pages 16-24, April.
    7. Yi Liang & Dongxiao Niu & Haichao Wang & Yan Li, 2017. "Factors Affecting Transportation Sector CO 2 Emissions Growth in China: An LMDI Decomposition Analysis," Sustainability, MDPI, vol. 9(10), pages 1-20, September.
    8. Cecilia Tortajada, 2006. "Who Has Access to Water? Case Study of Mexico City Metropolitan Area," Human Development Occasional Papers (1992-2007) HDOCPA-2006-16, Human Development Report Office (HDRO), United Nations Development Programme (UNDP).
    9. Knapp, Tom & Mookerjee, Rajen, 1996. "Population growth and global CO2 emissions : A secular perspective," Energy Policy, Elsevier, vol. 24(1), pages 31-37, January.
    10. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Why have CO2 emissions increased in the transport sector in Asia ? underlying factors and policy options," Policy Research Working Paper Series 5098, The World Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Madjid Tavana & Akram Shaabani & Francisco Javier Santos-Arteaga & Iman Raeesi Vanani, 2020. "A Review of Uncertain Decision-Making Methods in Energy Management Using Text Mining and Data Analytics," Energies, MDPI, vol. 13(15), pages 1-23, August.
    2. Zsuzsanna Katalin Szabo & Zsombor Szádoczki & Sándor Bozóki & Gabriela C. Stănciulescu & Dalma Szabo, 2021. "An Analytic Hierarchy Process Approach for Prioritisation of Strategic Objectives of Sustainable Development," Sustainability, MDPI, vol. 13(4), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando Ramos-Quintana & Héctor Sotelo-Nava & Hugo Saldarriaga-Noreña & Efraín Tovar-Sánchez, 2019. "Assessing the Environmental Quality Resulting from Damages to Human-Nature Interactions Caused by Population Increase: A Systems Thinking Approach," Sustainability, MDPI, vol. 11(7), pages 1-29, April.
    2. Manel Daldoul & Ahlem Dakhlaoui, 2018. "Using the LMDI Decomposition Approach to Analyze the Influencing Factors of Carbon Emissions in Tunisian Transportation Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 22-28.
    3. Anwar, Ahsan & Sharif, Arshian & Fatima, Saba & Ahmad, Paiman & Sinha, Avik & Khan, Syed Abdul Rehman & Jermsittiparsert, Kittisak, 2021. "The asymmetric effect of public private partnership investment on transport CO2 emission in China: Evidence from quantile ARDL approach," MPRA Paper 108160, University Library of Munich, Germany, revised 2021.
    4. Xiaodong Li & Ai Ren & Qi Li, 2022. "Exploring Patterns of Transportation-Related CO 2 Emissions Using Machine Learning Methods," Sustainability, MDPI, vol. 14(8), pages 1-21, April.
    5. Ming Meng & Manyu Li, 2020. "Decomposition Analysis and Trend Prediction of CO 2 Emissions in China’s Transportation Industry," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    6. Suyi Kim, 2019. "Decomposition Analysis of Greenhouse Gas Emissions in Korea’s Transportation Sector," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    7. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    8. Masato Abe, 2011. "Achieving a sustainable automotive sector in Asia and the Pacific: Challenges and opportunities for the reduction of vehicle CO2 emissions," Working Papers 10811, Asia-Pacific Research and Training Network on Trade (ARTNeT), an initiative of UNESCAP and IDRC, Canada..
    9. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    10. Andreoni, V. & Galmarini, S., 2012. "European CO2 emission trends: A decomposition analysis for water and aviation transport sectors," Energy, Elsevier, vol. 45(1), pages 595-602.
    11. Robaina, Margarita & Neves, Ana, 2021. "Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe," Research in Transportation Economics, Elsevier, vol. 90(C).
    12. M'raihi, Rafaa & Mraihi, Talel & Harizi, Riadh & Taoufik Bouzidi, Mohamed, 2015. "Carbon emissions growth and road freight: Analysis of the influencing factors in Tunisia," Transport Policy, Elsevier, vol. 42(C), pages 121-129.
    13. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    14. Cai, Bofeng & Yang, Weishan & Cao, Dong & Liu, Lancui & Zhou, Ying & Zhang, Zhansheng, 2012. "Estimates of China's national and regional transport sector CO2 emissions in 2007," Energy Policy, Elsevier, vol. 41(C), pages 474-483.
    15. Paudel, Krishna P. & Timilsina, Govinda R., 2010. "Would There Be Surplus Grains for Biofuels? An Assessment of Agro-economic Factors and Biofuel Production Potential at the Global Level," Staff Papers 113125, Louisiana State University, Department of Agricultural Economics and Agribusiness.
    16. Ben Abdallah, Khaled & Belloumi, Mounir & De Wolf, Daniel, 2015. "International comparisons of energy and environmental efficiency in the road transport sector," Energy, Elsevier, vol. 93(P2), pages 2087-2101.
    17. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    18. Geoffrey Udoka Nnadiri & Anthony S. F. Chiu & Jose Bienvenido Manuel Biona & Neil Stephen Lopez, 2021. "Comparison of Driving Forces to Increasing Traffic Flow and Transport Emissions in Philippine Regions: A Spatial Decomposition Study," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    19. Yang Song & Kevin R. Gurney, 2020. "The Relationship between On-Road FFCO 2 Emissions and Socio-Economic/Urban Form Factors for Global Cities: Significance, Robustness and Implications," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    20. Lee, Zhi Hua & Sethupathi, Sumathi & Lee, Keat Teong & Bhatia, Subhash & Mohamed, Abdul Rahman, 2013. "An overview on global warming in Southeast Asia: CO2 emission status, efforts done, and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 71-81.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5649-:d:276130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.