IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0234977.html
   My bibliography  Save this article

Prediction modelling studies for medical usage rates in mass gatherings: A systematic review

Author

Listed:
  • Hans Van Remoortel
  • Hans Scheers
  • Emmy De Buck
  • Winne Haenen
  • Philippe Vandekerckhove

Abstract

Background: Mass gathering manifestations attended by large crowds are an increasingly common feature of society. In parallel, an increased number of studies have been conducted that developed and/or validated a model to predict medical usage rates at these manifestations. Aims: To conduct a systematic review to screen, analyse and critically appraise those studies that developed or validated a multivariable statistical model to predict medical usage rates at mass gatherings. To identify those biomedical, psychosocial and environmental predictors that are associated with increased medical usage rates and to summarise the predictive performance of the models. Method: We searched for relevant prediction modelling studies in six databases. The predictors from multivariable regression models were listed for each medical usage rate outcome (i.e. patient presentation rate (PPR), transfer to hospital rate (TTHR) and the incidence of new injuries). The GRADE methodology (Grades of Recommendation, Assessment, Development and Evaluation) was used to assess the certainty of evidence. Results: We identified 7,036 references and finally included 16 prediction models which were developed (n = 13) or validated (n = 3) in the USA (n = 8), Australia (n = 4), Japan (n = 1), Singapore (n = 1), South Africa (n = 1) and The Netherlands (n = 1), with a combined audience of >48 million people in >1700 mass gatherings. Variables to predict medical usage rates were biomedical (i.e. age, gender, level of competition, training characteristics and type of injury) and environmental predictors (i.e. crowd size, accommodation, weather, free water availability, time of the manifestation and type of the manifestation) (low-certainty evidence). Evidence from 3 studies indicated that using Arbon’s or Zeitz’ model in other contexts significantly over- or underestimated medical usage rates (from 22% overestimation to 81% underestimation). Conclusions: This systematic review identified multivariable models with biomedical and environmental predictors for medical usage rates at mass gatherings. Since the overall certainty of the evidence is low and the predictive performance is generally poor, proper development and validation of a context-specific model is recommended.

Suggested Citation

  • Hans Van Remoortel & Hans Scheers & Emmy De Buck & Winne Haenen & Philippe Vandekerckhove, 2020. "Prediction modelling studies for medical usage rates in mass gatherings: A systematic review," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-20, June.
  • Handle: RePEc:plo:pone00:0234977
    DOI: 10.1371/journal.pone.0234977
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234977
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0234977&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0234977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    2. Valentin Amrhein & Sander Greenland & Blake McShane, 2019. "Scientists rise up against statistical significance," Nature, Nature, vol. 567(7748), pages 305-307, March.
    3. Ronald L. Wasserstein & Allen L. Schirm & Nicole A. Lazar, 2019. "Moving to a World Beyond “p," The American Statistician, Taylor & Francis Journals, vol. 73(S1), pages 1-19, March.
    4. Karel G M Moons & Joris A H de Groot & Walter Bouwmeester & Yvonne Vergouwe & Susan Mallett & Douglas G Altman & Johannes B Reitsma & Gary S Collins, 2014. "Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies: The CHARMS Checklist," PLOS Medicine, Public Library of Science, vol. 11(10), pages 1-12, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azeem, Muhammad Masood & Sheridan, Alison & Adapa, Sujana, 2022. "Women to women: Enabling innovation and firm performance in developing countries," Emerging Markets Review, Elsevier, vol. 51(PA).
    2. Abbas, Sadia & Adapa, Sujana & Sheridan, Alison & Azeem, Muhammad Masood, 2022. "Informal competition and firm level innovation in South Asia: The moderating role of innovation time off and R&D intensity," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    3. Fazel, Seena & Burghart, Matthias & Fanshawe, Thomas & Gil, Sharon Danielle & Monahan, John & Yu, Rongqin, 2022. "The predictive performance of criminal risk assessment tools used at sentencing: Systematic review of validation studies," Journal of Criminal Justice, Elsevier, vol. 81(C).
    4. Fisaha Haile Tesfay & Kathryn Backholer & Christina Zorbas & Steven J. Bowe & Laura Alston & Catherine M. Bennett, 2022. "The Magnitude of NCD Risk Factors in Ethiopia: Meta-Analysis and Systematic Review of Evidence," IJERPH, MDPI, vol. 19(9), pages 1-19, April.
    5. Paulien Van Acker & Wim Van Biesen & Evi V Nagler & Muguet Koobasi & Nic Veys & Jill Vanmassenhove, 2021. "Risk prediction models for acute kidney injury in adults: An overview of systematic reviews," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-14, April.
    6. Erin R. Lipman & John Deke & Mariel M. Finucane, 2022. "Bayesian Interpretation Of Cluster‐Robust Subgroup Impact Estimates: The Best Of Both Worlds," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 41(4), pages 1204-1224, September.
    7. Vieira, Bruno Hebling & Pamplona, Gustavo Santo Pedro & Fachinello, Karim & Silva, Alice Kamensek & Foss, Maria Paula & Salmon, Carlos Ernesto Garrido, 2022. "On the prediction of human intelligence from neuroimaging: A systematic review of methods and reporting," Intelligence, Elsevier, vol. 93(C).
    8. Keith R Lohse & Kristin L Sainani & J Andrew Taylor & Michael L Butson & Emma J Knight & Andrew J Vickers, 2020. "Systematic review of the use of “magnitude-based inference” in sports science and medicine," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-22, June.
    9. Brittany E. Pugh & Richard Field, 2023. "Effect of Canal Bank Engineering Disturbance on Plant Communities: Analysis of Taxonomic and Functional Beta Diversity," Land, MDPI, vol. 12(5), pages 1-26, May.
    10. İlkay Unay-Gailhard & Mark A. Brennen, 2022. "How digital communications contribute to shaping the career paths of youth: a review study focused on farming as a career option," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(4), pages 1491-1508, December.
    11. Mahin Ghafari & Vali Baigi & Zahra Cheraghi & Amin Doosti-Irani, 2016. "The Prevalence of Asymptomatic Bacteriuria in Iranian Pregnant Women: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-10, June.
    12. Elizabeth T Cafiero-Fonseca & Andrew Stawasz & Sydney T Johnson & Reiko Sato & David E Bloom, 2017. "The full benefits of adult pneumococcal vaccination: A systematic review," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-23, October.
    13. Santos Urbina & Sofía Villatoro & Jesús Salinas, 2021. "Self-Regulated Learning and Technology-Enhanced Learning Environments in Higher Education: A Scoping Review," Sustainability, MDPI, vol. 13(13), pages 1-12, June.
    14. Oded Berger-Tal & Alison L Greggor & Biljana Macura & Carrie Ann Adams & Arden Blumenthal & Amos Bouskila & Ulrika Candolin & Carolina Doran & Esteban Fernández-Juricic & Kiyoko M Gotanda & Catherine , 2019. "Systematic reviews and maps as tools for applying behavioral ecology to management and policy," Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(1), pages 1-8.
    15. Nadine Desrochers & Adèle Paul‐Hus & Jen Pecoskie, 2017. "Five decades of gratitude: A meta‐synthesis of acknowledgments research," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(12), pages 2821-2833, December.
    16. Maryono, Maryono & Killoes, Aditya Marendra & Adhikari, Rajendra & Abdul Aziz, Ammar, 2024. "Agriculture development through multi-stakeholder partnerships in developing countries: A systematic literature review," Agricultural Systems, Elsevier, vol. 213(C).
    17. Alene Sze Jing Yong & Yi Heng Lim & Mark Wing Loong Cheong & Ednin Hamzah & Siew Li Teoh, 2022. "Willingness-to-pay for cancer treatment and outcome: a systematic review," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 1037-1057, August.
    18. Xue-Ying Xu & Hong Kong & Rui-Xiang Song & Yu-Han Zhai & Xiao-Fei Wu & Wen-Si Ai & Hong-Bo Liu, 2014. "The Effectiveness of Noninvasive Biomarkers to Predict Hepatitis B-Related Significant Fibrosis and Cirrhosis: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-16, June.
    19. Vicente Miñana-Signes & Manuel Monfort-Pañego & Javier Valiente, 2021. "Teaching Back Health in the School Setting: A Systematic Review of Randomized Controlled Trials," IJERPH, MDPI, vol. 18(3), pages 1-18, January.
    20. Agnieszka A. Tubis & Katarzyna Grzybowska, 2022. "In Search of Industry 4.0 and Logistics 4.0 in Small-Medium Enterprises—A State of the Art Review," Energies, MDPI, vol. 15(22), pages 1-26, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0234977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.