IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0232638.html
   My bibliography  Save this article

Consensus based SoC trajectory tracking control design for economic-dispatched distributed battery energy storage system

Author

Listed:
  • Shafaat Ullah
  • Laiq Khan
  • Rabiah Badar
  • Ameen Ullah
  • Fazal Wahab Karam
  • Zain Ahmad Khan
  • Atiq Ur Rehman

Abstract

The state-of-charge (SoC) of an energy storage system (ESS) should be kept in a certain safe range for ensuring its state-of-health (SoH) as well as higher efficiency. This procedure maximizes the power capacity of the ESSs all the times. Furthermore, economic load dispatch (ELD) is implemented to allocate power among various ESSs, with the aim of fully meeting the load demand and reducing the total operating cost. In this research article, a distributed multi-agent consensus based control algorithm is proposed for multiple battery energy storage systems (BESSs), operating in a microgrid (MG), for fulfilling several objectives, including: SoC trajectories tracking control, economic load dispatch, active and reactive power sharing control, and voltage and frequency regulation (using the leader-follower consensus approach). The proposed algorithm considers the hierarchical control structure of the BESSs and the frequency/voltage droop controllers with limited information exchange among the BESSs. It embodies both self and communication time-delays, and achieves its objectives along with offering plug-and-play capability and robustness against communication link failure. Matlab/Simulink platform is used to test and validate the performance of the proposed algorithm under load disturbances through extensive simulations carried out on a modified IEEE 57-bus system. A detailed comparative analysis of the proposed distributed control strategy is carried out with the distributed PI-based conventional control strategy for demonstrating its superior performance.

Suggested Citation

  • Shafaat Ullah & Laiq Khan & Rabiah Badar & Ameen Ullah & Fazal Wahab Karam & Zain Ahmad Khan & Atiq Ur Rehman, 2020. "Consensus based SoC trajectory tracking control design for economic-dispatched distributed battery energy storage system," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-44, May.
  • Handle: RePEc:plo:pone00:0232638
    DOI: 10.1371/journal.pone.0232638
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232638
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0232638&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0232638?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tung-Lam Nguyen & Efren Guillo-Sansano & Mazheruddin H. Syed & Van-Hoa Nguyen & Steven M. Blair & Luis Reguera & Quoc-Tuan Tran & Raphael Caire & Graeme M. Burt & Catalin Gavriluta & Ngoc-An Luu, 2018. "Multi-Agent System with Plug and Play Feature for Distributed Secondary Control in Microgrid—Controller and Power Hardware-in-the-Loop Implementation," Energies, MDPI, vol. 11(12), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhengxin, Jiang & Qin, Shi & Yujiang, Wei & Hanlin, Wei & Bingzhao, Gao & Lin, He, 2021. "An Immune Genetic Extended Kalman Particle Filter approach on state of charge estimation for lithium-ion battery," Energy, Elsevier, vol. 230(C).
    2. Shafaat Ullah & Laiq Khan & Irfan Sami & Ghulam Hafeez & Fahad R. Albogamy, 2021. "A Distributed Hierarchical Control Framework for Economic Dispatch and Frequency Regulation of Autonomous AC Microgrids," Energies, MDPI, vol. 14(24), pages 1-23, December.
    3. Navid Rezaei & Abdollah Ahmadi & Mohammadhossein Deihimi, 2022. "A Comprehensive Review of Demand-Side Management Based on Analysis of Productivity: Techniques and Applications," Energies, MDPI, vol. 15(20), pages 1-28, October.
    4. Shafaat Ullah & Laiq Khan & Mohsin Jamil & Muhammad Jafar & Sidra Mumtaz & Saghir Ahmad, 2021. "A Finite-Time Robust Distributed Cooperative Secondary Control Protocol for Droop-Based Islanded AC Microgrids," Energies, MDPI, vol. 14(10), pages 1-26, May.
    5. Wonpoong Lee & Myeongseok Chae & Dongjun Won, 2022. "Optimal Scheduling of Energy Storage System Considering Life-Cycle Degradation Cost Using Reinforcement Learning," Energies, MDPI, vol. 15(8), pages 1-19, April.
    6. Ritu Kandari & Neeraj Neeraj & Alexander Micallef, 2022. "Review on Recent Strategies for Integrating Energy Storage Systems in Microgrids," Energies, MDPI, vol. 16(1), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thanh Van Nguyen & Kyeong-Hwa Kim, 2019. "Power Flow Control Strategy and Reliable DC-Link Voltage Restoration for DC Microgrid under Grid Fault Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    2. George C. Konstantopoulos & Antonio T. Alexandridis & Panos C. Papageorgiou, 2020. "Towards the Integration of Modern Power Systems into a Cyber–Physical Framework," Energies, MDPI, vol. 13(9), pages 1-20, May.
    3. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    4. Thomas I. Strasser & Sebastian Rohjans & Graeme M. Burt, 2019. "Methods and Concepts for Designing and Validating Smart Grid Systems," Energies, MDPI, vol. 12(10), pages 1-5, May.
    5. Hrvoje Keserica & Stjepan Sučić & Tomislav Capuder, 2019. "Standards-Compliant Chat-Based Middleware Platform for Smart Grid Management," Energies, MDPI, vol. 12(4), pages 1-12, February.
    6. Anna Rita Di Fazio & Mario Russo & Michele De Santis, 2019. "Zoning Evaluation for Voltage Optimization in Distribution Networks with Distributed Energy Resources," Energies, MDPI, vol. 12(3), pages 1-28, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0232638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.