IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0232615.html
   My bibliography  Save this article

Assessing the time intervals between economic recessions

Author

Listed:
  • Cláudio Tadeu Cristino
  • Piotr Żebrowski
  • Matthias Wildemeersch

Abstract

Economic recessions occur with varying duration and intensity and may entail substantial losses in terms of GDP, employment, household income, and investment spending. In this work, we propose a statistical model for the time intervals between recessions that accounts for the state of the economy and the impact of market adjustments and regulatory changes. The model uses a generalized renewal process based on the Gumbel distribution (GuGRP) in which times between consecutive events are conditionally independent. We also present a novel goodness of fit test tailored to the GuGRP that validates the use of the statistical model for the analysis of recessions. Analyzing recessions in the U.S. and Europe, we demonstrate that the statistical model characterizes well recession inter-arrival times and that the model performs better than simpler, commonly used distributions. In addition, the presented statistical model enables us to compare the adjustment processes in different economies and to forecast the occurrence of future recessions.

Suggested Citation

  • Cláudio Tadeu Cristino & Piotr Żebrowski & Matthias Wildemeersch, 2020. "Assessing the time intervals between economic recessions," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-20, May.
  • Handle: RePEc:plo:pone00:0232615
    DOI: 10.1371/journal.pone.0232615
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232615
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0232615&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0232615?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:hal:spmain:info:hdl:2441/4h9cnu4n2k8tfri093jil1d739 is not listed on IDEAS
    2. Vasco M. Carvalho, 2014. "From Micro to Macro via Production Networks," Journal of Economic Perspectives, American Economic Association, vol. 28(4), pages 23-48, Fall.
    3. G Dosi & M C Pereira & A Roventini & M E Virgillito, 2018. "Causes and consequences of hysteresis: aggregate demand, productivity, and employment," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 27(6), pages 1015-1044.
    4. Sichel, Daniel E, 1991. "Business Cycle Duration Dependence: A Parametric Approach," The Review of Economics and Statistics, MIT Press, vol. 73(2), pages 254-260, May.
    5. Vasco M. Carvalho, 2014. "From Micro to Macro via Production Networks," Working Papers 793, Barcelona School of Economics.
    6. Makis, Viliam & Jardine, Andrew K. S., 1993. "A note on optimal replacement policy under general repair," European Journal of Operational Research, Elsevier, vol. 69(1), pages 75-82, August.
    7. repec:hal:spmain:info:hdl:2441/hiaqa97n684boj041a440irqd is not listed on IDEAS
    8. Chauvet, Marcelle, 1998. "An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 969-996, November.
    9. Ricardo José Ferreira & Paulo Renato Alves Firmino & Cláudio Tadeu Cristino, 2015. "A Mixed Kijima Model Using the Weibull-Based Generalized Renewal Processes," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-17, July.
    10. Diebold, Francis X & Rudebusch, Glenn D, 1990. "A Nonparametric Investigation of Duration Dependence in the American Business Cycle," Journal of Political Economy, University of Chicago Press, vol. 98(3), pages 596-616, June.
    11. Rudebusch, Glenn D. & Williams, John C., 2009. "Forecasting Recessions: The Puzzle of the Enduring Power of the Yield Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 492-503.
    12. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    13. Mark W. Watson, 1991. "Using econometric models to predict recessions," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 15(Nov), pages 14-25.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beutner, Eric, 2023. "A review of effective age models and associated non- and semiparametric methods," Econometrics and Statistics, Elsevier, vol. 28(C), pages 105-119.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Bin & Xiao, Wen & Zhu, Xingting, 2023. "How does inter-industry spillover improve the performance of volatility forecasting?," The North American Journal of Economics and Finance, Elsevier, vol. 65(C).
    2. Chang-Jin Kim & Chris Murray, 1999. "Permanent and Transitory Nature of Recessions," Discussion Papers in Economics at the University of Washington 0041, Department of Economics at the University of Washington.
    3. Cover, James P. & Pecorino, Paul, 2005. "The length of US business expansions: When did the break in the data occur?," Journal of Macroeconomics, Elsevier, vol. 27(3), pages 452-471, September.
    4. Dongyeol Lee, 2019. "Transmission of Domestic and External Shocks through Input-Output Network: Evidence from Korean Industries," IMF Working Papers 2019/117, International Monetary Fund.
    5. Iiboshi, Hirokuni, 2007. "Duration dependence of the business cycle in Japan: A Bayesian analysis of extended Markov switching model," Japan and the World Economy, Elsevier, vol. 19(1), pages 86-111, January.
    6. Lo Turco, Alessia & Maggioni, Daniela & Zazzaro, Alberto, 2019. "Financial dependence and growth: The role of input-output linkages," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 308-328.
    7. Carlo Piccardi & Lucia Tajoli & Riccardo Vitali, 2024. "Patterns of variability in the structure of global value chains: a network analysis," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 160(3), pages 1009-1036, August.
    8. Peydró, José-Luis & Jiménez, Gabriel & Kenan, Huremovic & Moral-Benito, Enrique & Vega-Redondo, Fernando, 2020. "Production and financial networks in interplay: Crisis evidence from supplier-customer and credit registers," CEPR Discussion Papers 15277, C.E.P.R. Discussion Papers.
    9. Fédéric Holm-Hadulla & Kirstin Hubrich, 2017. "Macroeconomic Implications of Oil Price Fluctuations : A Regime-Switching Framework for the Euro Area," Finance and Economics Discussion Series 2017-063, Board of Governors of the Federal Reserve System (U.S.).
    10. Thomas J. Sargent & John Stachurski, 2022. "Economic Networks: Theory and Computation," Papers 2203.11972, arXiv.org, revised Jul 2022.
    11. Vitor Castro, 2015. "The Portuguese business cycle: chronology and duration dependence," Empirical Economics, Springer, vol. 49(1), pages 325-342, August.
    12. Erik Frohm & Vanessa Gunnella, 2021. "Spillovers in global production networks," Review of International Economics, Wiley Blackwell, vol. 29(3), pages 663-680, August.
    13. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    14. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    15. Mandel, Antoine & Taghawi-Nejad, Davoud & Veetil, Vipin P., 2019. "The price effects of monetary shocks in a network economy," Journal of Economic Behavior & Organization, Elsevier, vol. 164(C), pages 300-316.
    16. Lorenzo Burlon, 2015. "Ownership networks and aggregate volatility," Temi di discussione (Economic working papers) 1004, Bank of Italy, Economic Research and International Relations Area.
    17. Kim, Daisoon, 2021. "Economies of scale and international business cycles," Journal of International Economics, Elsevier, vol. 131(C).
    18. Julian Di Giovanni & Galina Hale, 2022. "Stock Market Spillovers via the Global Production Network: Transmission of U.S. Monetary Policy," Journal of Finance, American Finance Association, vol. 77(6), pages 3373-3421, December.
    19. Hötte, Kerstin, 2023. "Demand-pull, technology-push, and the direction of technological change," Research Policy, Elsevier, vol. 52(5).
    20. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Networks, Shocks, and Systemic Risk," NBER Working Papers 20931, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0232615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.