IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0231763.html
   My bibliography  Save this article

Oxycodone versus morphine for cancer pain titration: A systematic review and pharmacoeconomic evaluation

Author

Listed:
  • Junxiang Zhou
  • Yixin Wang
  • Gang Jiang

Abstract

Objective: To evaluate the efficacy, safety and cost-effectiveness of Oxycodone Hydrochloride Controlled-release Tablets (CR oxycodone) and Morphine Sulfate Sustained-release Tablets (SR morphine) for moderate to severe cancer pain titration. Methods: Randomized controlled trials meeting the inclusion criteria were searched through Medline, Cochrane Library, Pubmed, EMbase, CNKI,VIP and WanFang database from the data of their establishment to June 2019. The efficacy and safety data were extracted from the included literature. The pain control rate was calculated to eatimate efficacy. Meta-analysis was conducted by Revman5.1.4. A decision tree model was built to simulate cancer pain titration process. The initial dose of CR oxycodone and SR morphine group were 20mg and 30mg respectively. Oral immediate-release morphine was administered to treat break-out pain. The incremental cost-effectiveness ratio was performed with TreeAge Pro 2019. Results: 19 studies (1680 patients)were included in this study. Meta-analysis showed that the pain control rate of CR oxycodone and SR morphine were 86% and 82.98% respectively. The costs of CR oxycodone and SR morphine were $23.27 and $13.31. The incremental cost-effectiveness ratio per unit was approximate $329.76. At the willingness-to-pay threshold of $8836, CR oxycodone was cost-effective, while the corresponding probability of being cost-effective at the willingness-to-pay threshold of $300 was 31.6%. One-way sensitivity analysis confirmed robustness of results. Conclusions: CR oxycodone could be a cost-effective option compared with SR morphine for moderate to severe cancer pain titration in China, according to the threshold defined by the WHO.

Suggested Citation

  • Junxiang Zhou & Yixin Wang & Gang Jiang, 2020. "Oxycodone versus morphine for cancer pain titration: A systematic review and pharmacoeconomic evaluation," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-19, April.
  • Handle: RePEc:plo:pone00:0231763
    DOI: 10.1371/journal.pone.0231763
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231763
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0231763&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0231763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Doubilet & Colin B. Begg & Milton C. Weinstein & Peter Braun & Barbara J. McNeil, 1985. "Probabilistic Sensitivity Analysis Using Monte Carlo Simulation," Medical Decision Making, , vol. 5(2), pages 157-177, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. E. Ades & Karl Claxton & Mark Sculpher, 2006. "Evidence synthesis, parameter correlation and probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 373-381, April.
    2. Pedram Sendi & Huldrych F Günthard & Mathew Simcock & Bruno Ledergerber & Jörg Schüpbach & Manuel Battegay & for the Swiss HIV Cohort Study, 2007. "Cost-Effectiveness of Genotypic Antiretroviral Resistance Testing in HIV-Infected Patients with Treatment Failure," PLOS ONE, Public Library of Science, vol. 2(1), pages 1-8, January.
    3. Karl Claxton & Elisabeth Fenwick & Mark J. Sculpher, 2012. "Decision-making with Uncertainty: The Value of Information," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 51, Edward Elgar Publishing.
    4. Ya-Chen Shih & Josephine Mauskopf & Rohit Borker, 2007. "A Cost-Effectiveness Analysis of First-Line Controller Therapies for Persistent Asthma," PharmacoEconomics, Springer, vol. 25(7), pages 577-590, July.
    5. James C. Felli & Gordon B. Hazen, 2004. "Javelin Diagrams: A Graphical Tool for Probabilistic Sensitivity Analysis," Decision Analysis, INFORMS, vol. 1(2), pages 93-107, June.
    6. Jordan Amdahl & Jose Diaz & Arati Sharma & Jinhee Park & David Chandiwana & Thomas E Delea, 2017. "Cost-effectiveness of pazopanib versus sunitinib for metastatic renal cell carcinoma in the United Kingdom," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-18, June.
    7. Glenn D. Rennels & Edward H. Shortliffe & Perry L. Miller, 1987. "Choice and Explanation in Medical Management," Medical Decision Making, , vol. 7(1), pages 22-31, February.
    8. Rowan Iskandar & Carlo Federici & Cassandra Berns & Carl Rudolf Blankart, 2022. "An approach to quantify parameter uncertainty in early assessment of novel health technologies," Health Economics, John Wiley & Sons, Ltd., vol. 31(S1), pages 116-134, September.
    9. Catherine A. Goodman & Paul G. Coleman & Anne J. Mills, 2001. "Changing the first line drug for malaria treatment—cost‐effectiveness analysis with highly uncertain inter‐temporal trade‐offs," Health Economics, John Wiley & Sons, Ltd., vol. 10(8), pages 731-749, December.
    10. Carus, Jana & Heuner, Maike & Paul, Maike & Schröder, Boris, 2017. "Which factors and processes drive the spatio-temporal dynamics of brackish marshes?—Insights from development and parameterisation of a mechanistic vegetation model," Ecological Modelling, Elsevier, vol. 363(C), pages 122-136.
    11. Gabriel Rogers & Ruth Garside & Stuart Mealing & Martin Pitt & Rob Anderson & Matthew Dyer & Ken Stein & Margaret Somerville, 2008. "Carmustine Implants for the Treatment of Newly Diagnosed High-Grade Gliomas," PharmacoEconomics, Springer, vol. 26(1), pages 33-44, January.
    12. K. Claxton & P. J. Neumannn & S. S. Araki & M. C. Weinstein, "undated". "Bayesian Value-of-Information Analysis: An Application to a Policy Model of Alzheimer's Disease," Discussion Papers 00/39, Department of Economics, University of York.
    13. Nadia Yakhelef & Martine Audibert & Gabriella Ferlazzo & Joseph Sitienei & Steve Wanjala & Francis Varaine & Maryline Bonnet & Helena Huerga, 2020. "Cost-effectiveness of diagnostic algorithms including lateral-flow urine lipoarabinomannan for HIV-positive patients with symptoms of tuberculosis," Post-Print halshs-03170014, HAL.
    14. David J. Vanness & W. Ray Kim, 2002. "Bayesian estimation, simulation and uncertainty analysis: the cost‐effectiveness of ganciclovir prophylaxis in liver transplantation," Health Economics, John Wiley & Sons, Ltd., vol. 11(6), pages 551-566, September.
    15. Leivo, T. & Salomaa, A. & Kosunen, T. U. & Tuominen, R. & Farkkila, M. & Linna, M. & Sintonen, H., 2004. "Cost-benefit analysis of Helicobacter pylori screening," Health Policy, Elsevier, vol. 70(1), pages 85-96, October.
    16. J. Robert Beck, 1986. "Independent Development of Probabilistic Sensitivity Analysis," Medical Decision Making, , vol. 6(2), pages 66-67, June.
    17. Björn Stollenwerk & Stephanie Stock & Uwe Siebert & Karl W. Lauterbach & Rolf Holle, 2010. "Uncertainty Assessment of Input Parameters for Economic Evaluation: Gauss’s Error Propagation, an Alternative to Established Methods," Medical Decision Making, , vol. 30(3), pages 304-313, May.
    18. Mehmet A. Ergun & Ali Hajjar & Oguzhan Alagoz & Murtuza Rampurwala, 2022. "Optimal breast cancer risk reduction policies tailored to personal risk level," Health Care Management Science, Springer, vol. 25(3), pages 363-388, September.
    19. Knoblauch, Theresa A.K. & Trutnevyte, Evelina, 2018. "Siting enhanced geothermal systems (EGS): Heat benefits versus induced seismicity risks from an investor and societal perspective," Energy, Elsevier, vol. 164(C), pages 1311-1325.
    20. Curtis P. Langlotz & Edward H. Shortliffe & Lawrence M. Fagan, 1988. "A Methodology for Generating Computer-based Explanations of Decision-theoretic Advice," Medical Decision Making, , vol. 8(4), pages 290-303, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0231763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.