IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0230316.html
   My bibliography  Save this article

Temperature and self-reported mental health in the United States

Author

Listed:
  • Mengyao Li
  • Susana Ferreira
  • Travis A Smith

Abstract

This study estimates the association between temperature and self-reported mental health. We match individual-level mental health data for over three million Americans between 1993 and 2010 to historical daily weather information. We exploit the random fluctuations in temperature over time within counties to identify its effect on a 30-day measure of self-reported mental health. Compared to the temperature range of 60–70°F, cooler days in the past month reduce the probability of reporting days of bad mental health while hotter days increase this probability. We also find a salience effect: cooler days have an immediate effect, whereas hotter days tend to matter most after about 10 days. Using our estimates, we calculate the willingness to pay to avoid an additional hot day in terms of its impact on self-reported mental health.

Suggested Citation

  • Mengyao Li & Susana Ferreira & Travis A Smith, 2020. "Temperature and self-reported mental health in the United States," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-20, March.
  • Handle: RePEc:plo:pone00:0230316
    DOI: 10.1371/journal.pone.0230316
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230316
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0230316&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0230316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Barreca, Alan I., 2012. "Climate change, humidity, and mortality in the United States," Journal of Environmental Economics and Management, Elsevier, vol. 63(1), pages 19-34.
    2. Deschenes, Olivier, 2014. "Temperature, human health, and adaptation: A review of the empirical literature," Energy Economics, Elsevier, vol. 46(C), pages 606-619.
    3. Olivier Deschênes & Michael Greenstone, 2011. "Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 152-185, October.
    4. Susana Ferreira & Mirko Moro, 2010. "On the Use of Subjective Well-Being Data for Environmental Valuation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 46(3), pages 249-273, July.
    5. Jamie Mullins & Corey White, 2018. "Temperature, Climate Change, and Mental Health: Evidence from the Spectrum of Mental Health Outcomes," Working Papers 1801, California Polytechnic State University, Department of Economics.
    6. Joshua Graff Zivin & Matthew Neidell, 2014. "Temperature and the Allocation of Time: Implications for Climate Change," Journal of Labor Economics, University of Chicago Press, vol. 32(1), pages 1-26.
    7. Garth Heutel & Nolan H. Miller & David Molitor, 2021. "Adaptation and the Mortality Effects of Temperature across U.S. Climate Regions," The Review of Economics and Statistics, MIT Press, vol. 103(4), pages 740-753, October.
    8. Bruno S. Frey & Alois Stutzer, 2002. "What Can Economists Learn from Happiness Research?," Journal of Economic Literature, American Economic Association, vol. 40(2), pages 402-435, June.
    9. Grossman, Michael, 2000. "The human capital model," Handbook of Health Economics, in: A. J. Culyer & J. P. Newhouse (ed.), Handbook of Health Economics, edition 1, volume 1, chapter 7, pages 347-408, Elsevier.
    10. Alan Barreca & Karen Clay & Olivier Deschenes & Michael Greenstone & Joseph S. Shapiro, 2016. "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 105-159.
    11. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    12. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    13. Bruno S. Frey & Simon Luechinger & Alois Stutzer, 2010. "The Life Satisfaction Approach to Environmental Valuation," Annual Review of Resource Economics, Annual Reviews, vol. 2(1), pages 139-160, October.
    14. Zhang, Xin & Zhang, Xiaobo & Chen, Xi, 2017. "Happiness in the air: How does a dirty sky affect mental health and subjective well-being?," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 81-94.
    15. Geoffrey Heal & Jisung Park, 2016. "Editor's Choice Reflections—Temperature Stress and the Direct Impact of Climate Change: A Review of an Emerging Literature," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(2), pages 347-362.
    16. Daniel Kahneman & Alan B. Krueger, 2006. "Developments in the Measurement of Subjective Well-Being," Journal of Economic Perspectives, American Economic Association, vol. 20(1), pages 3-24, Winter.
    17. Oswald, Andrew J. & Wu, Stephen, 2010. "Objective Confirmation of Subjective Measures of Human Well-being: Evidence from the USA," IZA Discussion Papers 4695, Institute of Labor Economics (IZA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Awaworyi Churchill, Sefa & Munyanyi, Musharavati Ephraim & Trinh, Trong-Anh & Wiklund, Johan, 2024. "From disastrous heat waves to extreme rains: Effects of weather shocks on entrepreneurship," Journal of Business Venturing Insights, Elsevier, vol. 21(C).
    2. Sanduijav, Chimedregzen & Ferreira, Susana & Filipski, Mateusz & Hashida, Yukiko, 2021. "Air pollution and happiness: Evidence from the coldest capital in the world," Ecological Economics, Elsevier, vol. 187(C).
    3. Trinh, Trong-Anh & Appau, Samuelson & Awaworyi Churchill, Sefa & Farrell, Lisa, 2022. "Temperature shocks and gambling," Energy Economics, Elsevier, vol. 115(C).
    4. Yan Chen & Xiaohong Chen & Hongshan Ai & Xiaoqing Tan, 2022. "Temperature and Migration Intention: Evidence from the Unified National Graduate Entrance Examination in China," IJERPH, MDPI, vol. 19(16), pages 1-23, August.
    5. Yue Hua & Yun Qiu & Xiaoqing Tan, 2023. "The effects of temperature on mental health: evidence from China," Journal of Population Economics, Springer;European Society for Population Economics, vol. 36(3), pages 1293-1332, July.
    6. Dajung Jun & Matt Sutton, 2021. "Trends in Health Poverty in Australia, 2001-2018," Melbourne Institute Working Paper Series wp2021n25, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    7. Hailemariam, Abebe & Awaworyi Churchill, Sefa & Appau, Samuelson, 2023. "Temperature, health and wellbeing in Australia," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 106(C).
    8. Galárraga, Omar & Quijano-Ruiz, Alonso & Faytong-Haro, Marco, 2024. "The effects of mobile primary health teams: Evidence from the Médico del Barrio strategy in Ecuador," World Development, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sam Cosaert & Adrián Nieto & Konstantinos Tatsiramos, 2023. "Temperature and Joint Time Use," CESifo Working Paper Series 10464, CESifo.
    2. François Cohen & Antoine Dechezlepretre, 2017. "Mortality inequality, temperature and public health provision: evidence from Mexico," GRI Working Papers 268, Grantham Research Institute on Climate Change and the Environment.
    3. Nguyen, Cuong Viet & Nguyen, Manh-Hung & Nguyen, Toan Truong, 2022. "Climate Change, Cold Waves, Heat Waves, and Mortality: Evidence from a Lower Middle-Income Country," GLO Discussion Paper Series 1034, Global Labor Organization (GLO).
    4. Jaqueline Oliveira & Bruno Palialol & Paula Pereda, 2021. "Do temperature shocks affect non-agriculture wages in Brazil? Evidence from individual-level panel data," Working Papers, Department of Economics 2021_13, University of São Paulo (FEA-USP).
    5. Otrachshenko, Vladimir & Popova, Olga & Solomin, Pavel, 2018. "Misfortunes never come singly: Consecutive weather shocks and mortality in Russia," Economics & Human Biology, Elsevier, vol. 31(C), pages 249-258.
    6. Gibney, Garreth & McDermott, Thomas K.J. & Cullinan, John, 2023. "Temperature, morbidity, and behavior in milder climates," Economic Modelling, Elsevier, vol. 118(C).
    7. Yu, Xiumei & Lei, Xiaoyan & Wang, Min, 2019. "Temperature effects on mortality and household adaptation: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 195-212.
    8. Tamma Carleton & Amir Jina & Michael Delgado & Michael Greenstone & Trevor Houser & Solomon Hsiang & Andrew Hultgren & Robert E Kopp & Kelly E McCusker & Ishan Nath & James Rising & Ashwin Rode & Hee , 2023. "Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 137(4), pages 2037-2105.
    9. Duan, Hongbo & Yuan, Deyu & Cai, Zongwu & Wang, Shouyang, 2022. "Valuing the impact of climate change on China’s economic growth," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 155-174.
    10. Mullins, Jamie T. & White, Corey, 2019. "Temperature and mental health: Evidence from the spectrum of mental health outcomes," Journal of Health Economics, Elsevier, vol. 68(C).
    11. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    12. Cosaert, Sam & Nieto Castro, Adrian & Tatsiramos, Konstantinos, 2023. "Temperature and the Timing of Work," IZA Discussion Papers 16480, Institute of Labor Economics (IZA).
    13. Graff Zivin, Joshua & Song, Yingquan & Tang, Qu & Zhang, Peng, 2020. "Temperature and high-stakes cognitive performance: Evidence from the national college entrance examination in China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    14. Lehr, Jakob & Rehdanz, Katrin, 2024. "The effect of temperature on energy related CO2 emissions and economic performance in German industry," Energy Economics, Elsevier, vol. 138(C).
    15. Han, Ahram & Ten, Gi Khan & Wang, Shun, 2023. "Gray skies and blue moms: The effect of air pollution on parental life satisfaction," World Development, Elsevier, vol. 163(C).
    16. R. Jisung Park & Joshua Goodman & Michael Hurwitz & Jonathan Smith, 2020. "Heat and Learning," American Economic Journal: Economic Policy, American Economic Association, vol. 12(2), pages 306-339, May.
    17. Hailemariam, Abebe & Awaworyi Churchill, Sefa & Appau, Samuelson, 2023. "Temperature, health and wellbeing in Australia," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 106(C).
    18. Li, Xue & Smyth, Russell & Yao, Yao, 2023. "Extreme temperatures and out-of-pocket medical expenditure: Evidence from China," China Economic Review, Elsevier, vol. 77(C).
    19. Chen, Fanglin & Zhang, Xin & Chen, Zhongfei, 2023. "Behind climate change: Extreme heat and health cost," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 101-110.
    20. Meierrieks, Daniel, 2021. "Weather shocks, climate change and human health," World Development, Elsevier, vol. 138(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0230316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.