IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0229217.html
   My bibliography  Save this article

Testing gene-environment interactions for rare and/or common variants in sequencing association studies

Author

Listed:
  • Zihan Zhao
  • Jianjun Zhang
  • Qiuying Sha
  • Han Hao

Abstract

The risk of many complex diseases is determined by a complex interplay of genetic and environmental factors. Advanced next generation sequencing technology makes identification of gene-environment (GE) interactions for both common and rare variants possible. However, most existing methods focus on testing the main effects of common and/or rare genetic variants. There are limited methods developed to test the effects of GE interactions for rare variants only or rare and common variants simultaneously. In this study, we develop novel approaches to test the effects of GE interactions of rare and/or common risk, and/or protective variants in sequencing association studies. We propose two approaches: 1) testing the effects of an optimally weighted combination of GE interactions for rare variants (TOW-GE); 2) testing the effects of a weighted combination of GE interactions for both rare and common variants (variable weight TOW-GE, VW-TOW-GE). Extensive simulation studies based on the Genetic Analysis Workshop 17 data show that the type I error rates of the proposed methods are well controlled. Compared to the existing interaction sequence kernel association test (ISKAT), TOW-GE is more powerful when there are GE interactions’ effects for rare risk and/or protective variants; VW-TOW-GE is more powerful when there are GE interactions’ effects for both rare and common risk and protective variants. Both TOW-GE and VW-TOW-GE are robust to the directions of effects of causal GE interactions. We demonstrate the applications of TOW-GE and VW-TOW-GE using an imputed data from the COPDGene Study.

Suggested Citation

  • Zihan Zhao & Jianjun Zhang & Qiuying Sha & Han Hao, 2020. "Testing gene-environment interactions for rare and/or common variants in sequencing association studies," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-15, March.
  • Handle: RePEc:plo:pone00:0229217
    DOI: 10.1371/journal.pone.0229217
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229217
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0229217&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0229217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ian Barnett & Rajarshi Mukherjee & Xihong Lin, 2017. "The Generalized Higher Criticism for Testing SNP-Set Effects in Genetic Association Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 64-76, January.
    2. Xinyi Lin & Seunggeun Lee & Michael C. Wu & Chaolong Wang & Han Chen & Zilin Li & Xihong Lin, 2016. "Test for rare variants by environment interactions in sequencing association studies," Biometrics, The International Biometric Society, vol. 72(1), pages 156-164, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hong & Wu, Zheyang, 2022. "The general goodness-of-fit tests for correlated data," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    2. Mauricio A. Mazo Lopera & Brandon J. Coombes & Mariza De Andrade, 2017. "An Efficient Test for Gene-Environment Interaction in Generalized Linear Mixed Models with Family Data," IJERPH, MDPI, vol. 14(10), pages 1-13, September.
    3. Hong Zhang & Zheyang Wu, 2023. "The generalized Fisher's combination and accurate p‐value calculation under dependence," Biometrics, The International Biometric Society, vol. 79(2), pages 1159-1172, June.
    4. Zhao, Sihai Dave & Cai, T. Tony & Li, Hongzhe, 2017. "Optimal detection of weak positive latent dependence between two sequences of multiple tests," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 169-184.
    5. Haque Md Rejuan & Kubatko Laura, 2024. "A global test of hybrid ancestry from genome-scale data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 23(1), pages 1-18, January.
    6. Hébert, Florian & Causeur, David & Emily, Mathieu, 2021. "An adaptive decorrelation procedure for signal detection," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0229217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.