IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0226902.html
   My bibliography  Save this article

Feature selection for helpfulness prediction of online product reviews: An empirical study

Author

Listed:
  • Jiahua Du
  • Jia Rong
  • Sandra Michalska
  • Hua Wang
  • Yanchun Zhang

Abstract

Online product reviews underpin nearly all e-shopping activities. The high volume of data, as well as various online review quality, puts growing pressure on automated approaches for informative content prioritization. Despite a substantial body of literature on review helpfulness prediction, the rationale behind specific feature selection is largely under-studied. Also, the current works tend to concentrate on domain- and/or platform-dependent feature curation, lacking wider generalization. Moreover, the issue of result comparability and reproducibility occurs due to frequent data and source code unavailability. This study addresses the gaps through the most comprehensive feature identification, evaluation, and selection. To this end, the 30 most frequently used content-based features are first identified from 149 relevant research papers and grouped into five coherent categories. The features are then selected to perform helpfulness prediction on six domains of the largest publicly available Amazon 5-core dataset. Three scenarios for feature selection are considered: (i) individual features, (ii) features within each category, and (iii) all features. Empirical results demonstrate that semantics plays a dominant role in predicting informative reviews, followed by sentiment, and other features. Finally, feature combination patterns and selection guidelines across domains are summarized to enhance customer experience in today’s prevalent e-commerce environment. The computational framework for helpfulness prediction used in the study have been released to facilitate result comparability and reproducibility.

Suggested Citation

  • Jiahua Du & Jia Rong & Sandra Michalska & Hua Wang & Yanchun Zhang, 2019. "Feature selection for helpfulness prediction of online product reviews: An empirical study," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-26, December.
  • Handle: RePEc:plo:pone00:0226902
    DOI: 10.1371/journal.pone.0226902
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226902
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0226902&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0226902?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hu, Ya-Han & Chen, Kuanchin, 2016. "Predicting hotel review helpfulness: The impact of review visibility, and interaction between hotel stars and review ratings," International Journal of Information Management, Elsevier, vol. 36(6), pages 929-944.
    2. Cheng, Yi-Hsiu & Ho, Hui-Yi, 2015. "Social influence's impact on reader perceptions of online reviews," Journal of Business Research, Elsevier, vol. 68(4), pages 883-887.
    3. Mike Thelwall & Kevan Buckley & Georgios Paltoglou, 2012. "Sentiment strength detection for the social web," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(1), pages 163-173, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raoofpanah, Iman & Zamudio, César & Groening, Christopher, 2023. "Review reader segmentation based on the heterogeneous impacts of review and reviewer attributes on review helpfulness: A study involving ZIP code data," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    2. Rongqin Liu & Yun Zhang & Chuan Luo & Shangyu Tan & Yunqu Gong, 2024. "Review content type and hotel review helpfulness: direct and moderating effects," Information Technology and Management, Springer, vol. 25(4), pages 383-406, December.
    3. Román, Sergio & Riquelme, Isabel P. & Iacobucci, Dawn, 2023. "Fake or credible? Antecedents and consequences of perceived credibility in exaggerated online reviews," Journal of Business Research, Elsevier, vol. 156(C).
    4. Moradi, Masoud & Dass, Mayukh & Kumar, Piyush, 2023. "Differential effects of analytical versus emotional rhetorical style on review helpfulness," Journal of Business Research, Elsevier, vol. 154(C).
    5. Agrawal, Shiv Ratan & Mittal, Divya, 2022. "Optimizing customer engagement content strategy in retail and E-tail: Available on online product review videos," Journal of Retailing and Consumer Services, Elsevier, vol. 67(C).
    6. Saito, Taiga & Takahashi, Akihiko & Koide, Noriaki & Ichifuji, Yu, 2019. "Application of online booking data to hotel revenue management," International Journal of Information Management, Elsevier, vol. 46(C), pages 37-53.
    7. Shahzad, Khuram & Zhang, Qingyu & Zafar, Abaid Ullah & Ashfaq, Muhammad & Rehman, Shafique Ur, 2023. "The role of blockchain-enabled traceability, task technology fit, and user self-efficacy in mobile food delivery applications," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    8. Boukis, Achilleas, 2023. "Storytelling in initial coin offerings: Attracting investment or gaining referrals?," Journal of Business Research, Elsevier, vol. 160(C).
    9. Young Bin Kim & Sang Hyeok Lee & Shin Jin Kang & Myung Jin Choi & Jung Lee & Chang Hun Kim, 2015. "Virtual World Currency Value Fluctuation Prediction System Based on User Sentiment Analysis," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
    10. Surachartkumtonkun, Jiraporn (Nui) & Grace, Debra & Ross, Mitchell, 2021. "Unfair customer reviews: Third-party perceptions and managerial responses," Journal of Business Research, Elsevier, vol. 132(C), pages 631-640.
    11. Ping-Yu Hsu & Hong-Tsuen Lei & Shih-Hsiang Huang & Teng Hao Liao & Yao-Chung Lo & Chin-Chun Lo, 2019. "Effects of sentiment on recommendations in social network," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(2), pages 253-262, June.
    12. Luis J. Callarisa-Fiol & Miguel Ángel Moliner-Tena & Rosa Rodríguez-Artola & Javier Sánchez-García, 2023. "Entrepreneurship innovation using social robots in tourism: a social listening study," Review of Managerial Science, Springer, vol. 17(8), pages 2945-2971, November.
    13. Sheng, Jie, 2019. "Being Active in Online Communications: Firm Responsiveness and Customer Engagement Behaviour," Journal of Interactive Marketing, Elsevier, vol. 46(C), pages 40-51.
    14. Ismagilova, Elvira & Dwivedi, Yogesh K. & Slade, Emma, 2020. "Perceived helpfulness of eWOM: Emotions, fairness and rationality," Journal of Retailing and Consumer Services, Elsevier, vol. 53(C).
    15. Annamalai, Balamurugan & Yoshida, Masayuki & Varshney, Sanjeev & Pathak, Atul Arun & Venugopal, Pingali, 2021. "Social media content strategy for sport clubs to drive fan engagement," Journal of Retailing and Consumer Services, Elsevier, vol. 62(C).
    16. Liu, Yang & Chen, Yuan & Fan, Zhi-Ping, 2021. "Do social network crowds help fundraising campaigns? Effects of social influence on crowdfunding performance," Journal of Business Research, Elsevier, vol. 122(C), pages 97-108.
    17. Srivastava, Vartika & Kalro, Arti D., 2019. "Enhancing the Helpfulness of Online Consumer Reviews: The Role of Latent (Content) Factors," Journal of Interactive Marketing, Elsevier, vol. 48(C), pages 33-50.
    18. Simon Albrecht & Bernhard Lutz & Dirk Neumann, 2020. "The behavior of blockchain ventures on Twitter as a determinant for funding success," Electronic Markets, Springer;IIM University of St. Gallen, vol. 30(2), pages 241-257, June.
    19. Yankang Su & Zbigniew J. Kabala, 2023. "Public Perception of ChatGPT and Transfer Learning for Tweets Sentiment Analysis Using Wolfram Mathematica," Data, MDPI, vol. 8(12), pages 1-27, November.
    20. Yawar Abbas & M. S. I. Malik, 2023. "Defective products identification framework using online reviews," Electronic Commerce Research, Springer, vol. 23(2), pages 899-920, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0226902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.