IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0226902.html
   My bibliography  Save this article

Feature selection for helpfulness prediction of online product reviews: An empirical study

Author

Listed:
  • Jiahua Du
  • Jia Rong
  • Sandra Michalska
  • Hua Wang
  • Yanchun Zhang

Abstract

Online product reviews underpin nearly all e-shopping activities. The high volume of data, as well as various online review quality, puts growing pressure on automated approaches for informative content prioritization. Despite a substantial body of literature on review helpfulness prediction, the rationale behind specific feature selection is largely under-studied. Also, the current works tend to concentrate on domain- and/or platform-dependent feature curation, lacking wider generalization. Moreover, the issue of result comparability and reproducibility occurs due to frequent data and source code unavailability. This study addresses the gaps through the most comprehensive feature identification, evaluation, and selection. To this end, the 30 most frequently used content-based features are first identified from 149 relevant research papers and grouped into five coherent categories. The features are then selected to perform helpfulness prediction on six domains of the largest publicly available Amazon 5-core dataset. Three scenarios for feature selection are considered: (i) individual features, (ii) features within each category, and (iii) all features. Empirical results demonstrate that semantics plays a dominant role in predicting informative reviews, followed by sentiment, and other features. Finally, feature combination patterns and selection guidelines across domains are summarized to enhance customer experience in today’s prevalent e-commerce environment. The computational framework for helpfulness prediction used in the study have been released to facilitate result comparability and reproducibility.

Suggested Citation

  • Jiahua Du & Jia Rong & Sandra Michalska & Hua Wang & Yanchun Zhang, 2019. "Feature selection for helpfulness prediction of online product reviews: An empirical study," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-26, December.
  • Handle: RePEc:plo:pone00:0226902
    DOI: 10.1371/journal.pone.0226902
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226902
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0226902&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0226902?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cheng, Yi-Hsiu & Ho, Hui-Yi, 2015. "Social influence's impact on reader perceptions of online reviews," Journal of Business Research, Elsevier, vol. 68(4), pages 883-887.
    2. Hu, Ya-Han & Chen, Kuanchin, 2016. "Predicting hotel review helpfulness: The impact of review visibility, and interaction between hotel stars and review ratings," International Journal of Information Management, Elsevier, vol. 36(6), pages 929-944.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raoofpanah, Iman & Zamudio, César & Groening, Christopher, 2023. "Review reader segmentation based on the heterogeneous impacts of review and reviewer attributes on review helpfulness: A study involving ZIP code data," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    2. Rongqin Liu & Yun Zhang & Chuan Luo & Shangyu Tan & Yunqu Gong, 2024. "Review content type and hotel review helpfulness: direct and moderating effects," Information Technology and Management, Springer, vol. 25(4), pages 383-406, December.
    3. Román, Sergio & Riquelme, Isabel P. & Iacobucci, Dawn, 2023. "Fake or credible? Antecedents and consequences of perceived credibility in exaggerated online reviews," Journal of Business Research, Elsevier, vol. 156(C).
    4. Bi, Sheng & Liu, Zhiying & Usman, Khalid, 2017. "The influence of online information on investing decisions of reward-based crowdfunding," Journal of Business Research, Elsevier, vol. 71(C), pages 10-18.
    5. Moradi, Masoud & Dass, Mayukh & Kumar, Piyush, 2023. "Differential effects of analytical versus emotional rhetorical style on review helpfulness," Journal of Business Research, Elsevier, vol. 154(C).
    6. Yani Wang & Jun Wang & Tang Yao, 2019. "What makes a helpful online review? A meta-analysis of review characteristics," Electronic Commerce Research, Springer, vol. 19(2), pages 257-284, June.
    7. Guha Majumder, Madhumita & Dutta Gupta, Sangita & Paul, Justin, 2022. "Perceived usefulness of online customer reviews: A review mining approach using machine learning & exploratory data analysis," Journal of Business Research, Elsevier, vol. 150(C), pages 147-164.
    8. Saito, Taiga & Takahashi, Akihiko & Koide, Noriaki & Ichifuji, Yu, 2019. "Application of online booking data to hotel revenue management," International Journal of Information Management, Elsevier, vol. 46(C), pages 37-53.
    9. Shahzad, Khuram & Zhang, Qingyu & Zafar, Abaid Ullah & Ashfaq, Muhammad & Rehman, Shafique Ur, 2023. "The role of blockchain-enabled traceability, task technology fit, and user self-efficacy in mobile food delivery applications," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    10. Ketron, Seth, 2017. "Investigating the effect of quality of grammar and mechanics (QGAM) in online reviews: The mediating role of reviewer crediblity," Journal of Business Research, Elsevier, vol. 81(C), pages 51-59.
    11. Chang, Shuchih Ernest & Shen, Wei-Cheng & Liu, Anne Yenching, 2016. "Why mobile users trust smartphone social networking services? A PLS-SEM approach," Journal of Business Research, Elsevier, vol. 69(11), pages 4890-4895.
    12. Boukis, Achilleas, 2023. "Storytelling in initial coin offerings: Attracting investment or gaining referrals?," Journal of Business Research, Elsevier, vol. 160(C).
    13. Kawaf, Fatema & Istanbulluoglu, Doga, 2019. "Online fashion shopping paradox: The role of customer reviews and facebook marketing," Journal of Retailing and Consumer Services, Elsevier, vol. 48(C), pages 144-153.
    14. Meek, Stephanie & Wilk, Violetta & Lambert, Claire, 2021. "A big data exploration of the informational and normative influences on the helpfulness of online restaurant reviews," Journal of Business Research, Elsevier, vol. 125(C), pages 354-367.
    15. Surachartkumtonkun, Jiraporn (Nui) & Grace, Debra & Ross, Mitchell, 2021. "Unfair customer reviews: Third-party perceptions and managerial responses," Journal of Business Research, Elsevier, vol. 132(C), pages 631-640.
    16. Myles Landers, V. & Esmark Jones, Carol L. & Barney, Christian, 2024. "The social influence of employee groups: Understanding the impact of employee groups on customer intentions through intimidation," Journal of Business Research, Elsevier, vol. 170(C).
    17. Zhang, Mingyue & Zhao, Haichuan & Chen, Haipeng (Allan), 2022. "How much is a picture worth? Online review picture background and its impact on purchase intention," Journal of Business Research, Elsevier, vol. 139(C), pages 134-144.
    18. Sheng, Jie, 2019. "Being Active in Online Communications: Firm Responsiveness and Customer Engagement Behaviour," Journal of Interactive Marketing, Elsevier, vol. 46(C), pages 40-51.
    19. Roma, Paolo & Aloini, Davide, 2019. "How does brand-related user-generated content differ across social media? Evidence reloaded," Journal of Business Research, Elsevier, vol. 96(C), pages 322-339.
    20. Wang, Fang & Du, Zhao & Wang, Shan, 2023. "Information multidimensionality in online customer reviews," Journal of Business Research, Elsevier, vol. 159(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0226902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.