IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v8y2023i12p180-d1289559.html
   My bibliography  Save this article

Public Perception of ChatGPT and Transfer Learning for Tweets Sentiment Analysis Using Wolfram Mathematica

Author

Listed:
  • Yankang Su

    (Pioneer Academics, 101 Greenwood Ave, Ste 170, Jenkintown, PA 19046, USA)

  • Zbigniew J. Kabala

    (Department of Civil & Environmental Engineering, Duke University, Durham, NC 27708, USA)

Abstract

Understanding public opinion on ChatGPT is crucial for recognizing its strengths and areas of concern. By utilizing natural language processing (NLP), this study delves into tweets regarding ChatGPT to determine temporal patterns, content features, and topic modeling and perform a sentiment analysis. Analyzing a dataset of 500,000 tweets, our research shifts from conventional data science tools like Python and R to exploit Wolfram Mathematica’s robust capabilities. Additionally, with the aim of solving the problem of ignoring semantic information in the LDA model feature extraction, a synergistic methodology entwining LDA, GloVe embeddings, and K-Nearest Neighbors (KNN) clustering is proposed to categorize topics within ChatGPT-related tweets. This comprehensive strategy ensures semantic, syntactic, and topical congruence within classified groups by utilizing the strengths of probabilistic modeling, semantic embeddings, and similarity-based clustering. While built-in sentiment classifiers often fall short in accuracy, we introduce four transfer learning techniques from the Wolfram Neural Net Repository to address this gap. Two of these techniques involve transferring static word embeddings, “GloVe” and “ConceptNet”, which are further processed using an LSTM layer. The remaining techniques center on fine-tuning pre-trained models using scantily annotated data; one refines embeddings from language models (ELMo), while the other fine-tunes bidirectional encoder representations from transformers (BERT). Our experiments on the dataset underscore the effectiveness of the four methods for the sentiment analysis of tweets. This investigation augments our comprehension of user sentiment towards ChatGPT and emphasizes the continued significance of exploration in this domain. Furthermore, this work serves as a pivotal reference for scholars who are accustomed to using Wolfram Mathematica in other research domains, aiding their efforts in text analytics on social media platforms.

Suggested Citation

  • Yankang Su & Zbigniew J. Kabala, 2023. "Public Perception of ChatGPT and Transfer Learning for Tweets Sentiment Analysis Using Wolfram Mathematica," Data, MDPI, vol. 8(12), pages 1-27, November.
  • Handle: RePEc:gam:jdataj:v:8:y:2023:i:12:p:180-:d:1289559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/8/12/180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/8/12/180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mike Thelwall & Kevan Buckley & Georgios Paltoglou, 2012. "Sentiment strength detection for the social web," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(1), pages 163-173, January.
    2. Charlotte Roe & Madison Lowe & Benjamin Williams & Clare Miller, 2021. "Public Perception of SARS-CoV-2 Vaccinations on Social Media: Questionnaire and Sentiment Analysis," IJERPH, MDPI, vol. 18(24), pages 1-21, December.
    3. Mike Thelwall & Kevan Buckley & Georgios Paltoglou, 2012. "Sentiment strength detection for the social web," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(1), pages 163-173, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agrawal, Shiv Ratan & Mittal, Divya, 2022. "Optimizing customer engagement content strategy in retail and E-tail: Available on online product review videos," Journal of Retailing and Consumer Services, Elsevier, vol. 67(C).
    2. Martin Haselmayer & Marcelo Jenny, 2017. "Sentiment analysis of political communication: combining a dictionary approach with crowdcoding," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2623-2646, November.
    3. Young Bin Kim & Sang Hyeok Lee & Shin Jin Kang & Myung Jin Choi & Jung Lee & Chang Hun Kim, 2015. "Virtual World Currency Value Fluctuation Prediction System Based on User Sentiment Analysis," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
    4. Singh, Amit & Jenamani, Mamata & Thakkar, Jitesh J. & Rana, Nripendra P., 2022. "Quantifying the effect of eWOM embedded consumer perceptions on sales: An integrated aspect-level sentiment analysis and panel data modeling approach," Journal of Business Research, Elsevier, vol. 138(C), pages 52-64.
    5. Ping-Yu Hsu & Hong-Tsuen Lei & Shih-Hsiang Huang & Teng Hao Liao & Yao-Chung Lo & Chin-Chun Lo, 2019. "Effects of sentiment on recommendations in social network," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(2), pages 253-262, June.
    6. Fatma Najar & Nizar Bouguila, 2023. "On smoothing and scaling language model for sentiment based information retrieval," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 725-744, September.
    7. Luis J. Callarisa-Fiol & Miguel Ángel Moliner-Tena & Rosa Rodríguez-Artola & Javier Sánchez-García, 2023. "Entrepreneurship innovation using social robots in tourism: a social listening study," Review of Managerial Science, Springer, vol. 17(8), pages 2945-2971, November.
    8. Phuong Nguyen Hong Huynh & Tin Trung Hoang & Huynh Thi Thuy Phan & Quynh Le Nhu Nguyen, 2024. "The customers’ perception of privacy in the retail industry when adopting digital transformation," HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ECONOMICS AND BUSINESS ADMINISTRATION, HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE, HO CHI MINH CITY OPEN UNIVERSITY, vol. 14(2), pages 143-159.
    9. Jifeng Mu & Jonathan Z. Zhang, 2021. "Seller marketing capability, brand reputation, and consumer journeys on e-commerce platforms," Journal of the Academy of Marketing Science, Springer, vol. 49(5), pages 994-1020, September.
    10. Annamalai, Balamurugan & Yoshida, Masayuki & Varshney, Sanjeev & Pathak, Atul Arun & Venugopal, Pingali, 2021. "Social media content strategy for sport clubs to drive fan engagement," Journal of Retailing and Consumer Services, Elsevier, vol. 62(C).
    11. P. D. Mahendhiran & S. Kannimuthu, 2018. "Deep Learning Techniques for Polarity Classification in Multimodal Sentiment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 883-910, May.
    12. Simon Albrecht & Bernhard Lutz & Dirk Neumann, 2020. "The behavior of blockchain ventures on Twitter as a determinant for funding success," Electronic Markets, Springer;IIM University of St. Gallen, vol. 30(2), pages 241-257, June.
    13. Yawar Abbas & M. S. I. Malik, 2023. "Defective products identification framework using online reviews," Electronic Commerce Research, Springer, vol. 23(2), pages 899-920, June.
    14. Li, Xinwei & Xu, Mao & Zeng, Wenjuan & Tse, Ying Kei & Chan, Hing Kai, 2023. "Exploring customer concerns on service quality under the COVID-19 crisis: A social media analytics study from the retail industry," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    15. Xiong, Xi & Li, Yuanyuan & Qiao, Shaojie & Han, Nan & Wu, Yue & Peng, Jing & Li, Binyong, 2018. "An emotional contagion model for heterogeneous social media with multiple behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 185-202.
    16. Kristina Lerman & Luciano G. Marin & Megha Arora & Lucas H. Costa Lima & Emilio Ferrara & David Garcia, 2018. "Language, demographics, emotions, and the structure of online social networks," Journal of Computational Social Science, Springer, vol. 1(1), pages 209-225, January.
    17. Ghasem Javadi & Mohammad Taleai, 2020. "Integration of User Generated Geo-contents and Official Data to Assess Quality of Life in Intra-national Level," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(1), pages 205-235, November.
    18. José Luis Ortega, 2022. "Classification and analysis of PubPeer comments: How a web journal club is used," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(5), pages 655-670, May.
    19. Sykora, Martin & Elayan, Suzanne & Hodgkinson, Ian R. & Jackson, Thomas W. & West, Andrew, 2022. "The power of emotions: Leveraging user generated content for customer experience management," Journal of Business Research, Elsevier, vol. 144(C), pages 997-1006.
    20. Sunita Goel & Ozlem Uzuner, 2016. "Do Sentiments Matter in Fraud Detection? Estimating Semantic Orientation of Annual Reports," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(3), pages 215-239, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:8:y:2023:i:12:p:180-:d:1289559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.