IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0226096.html
   My bibliography  Save this article

Analyzing and interpreting spatial and temporal variability of the United States county population distributions using Taylor's law

Author

Listed:
  • Meng Xu
  • Joel E Cohen

Abstract

We study the spatial and temporal variation of the human population in the United States (US) counties from 1790 to 2010, using an ecological scaling pattern called Taylor's law (TL). TL states that the variance of population abundance is a power function of the mean population abundance. Despite extensive studies of TL for non-human populations, testing and interpreting TL using data on human populations are rare. Here we examine three types of TL that quantify the spatial and temporal variation of US county population abundance. Our results show that TL and its quadratic extension describe the mean-variance relationship of county population distribution well. The slope and statistics of TL reveal economic and demographic trends of the county populations. We propose TL as a useful statistical tool for analyzing human population variability. We suggest new ways of using TL to select and make population projections.

Suggested Citation

  • Meng Xu & Joel E Cohen, 2019. "Analyzing and interpreting spatial and temporal variability of the United States county population distributions using Taylor's law," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-25, December.
  • Handle: RePEc:plo:pone00:0226096
    DOI: 10.1371/journal.pone.0226096
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226096
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0226096&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0226096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joel E. Cohen, 2016. "Statistics of Primes (and Probably Twin Primes) Satisfy Taylor's Law from Ecology," The American Statistician, Taylor & Francis Journals, vol. 70(4), pages 399-404, October.
    2. Alessia Naccarato & Federico Benassi, 2018. "On the relationship between mean and variance of world's human population density: A study using Taylor's power law," Letters in Spatial and Resource Sciences, Springer, vol. 11(3), pages 307-314, October.
    3. Michael K. Tippett & Joel E. Cohen, 2016. "Tornado outbreak variability follows Taylor’s power law of fluctuation scaling and increases dramatically with severity," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    4. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    5. Jiang, Jiang & DeAngelis, Donald L. & Zhang, Bo & Cohen, Joel E., 2014. "Population age and initial density in a patchy environment affect the occurrence of abrupt transitions in a birth-and-death model of Taylor's law," Ecological Modelling, Elsevier, vol. 289(C), pages 59-65.
    6. Robert Lang & Paul Knox, 2009. "The New Metropolis: Rethinking Megalopolis," Regional Studies, Taylor & Francis Journals, vol. 43(6), pages 789-802.
    7. Coon, Randal C. & Leistritz, F. Larry, 1998. "The State Of North Dakota: Economic, Demographic, Public Service, And Fiscal Conditions - A Presentation Of Selected Indicators," Miscellaneous Publications 23076, North Dakota State University, Department of Agribusiness and Applied Economics.
    8. Richard P. Cincotta & Jennifer Wisnewski & Robert Engelman, 2000. "Human population in the biodiversity hotspots," Nature, Nature, vol. 404(6781), pages 990-992, April.
    9. Qing Cai & Hai-Chuan Xu & Wei-Xing Zhou, 2016. "Taylor's Law of temporal fluctuation scaling in stock illiquidity," Papers 1610.01149, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico Benassi & Maria Carella, 2023. "Modelling geographical variations in fertility and population density of Italian and foreign populations at the local scale: a spatial Durbin approach for Italy (2002–2018)," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2147-2164, June.
    2. Kurubaran Ganasegeran & Mohd Fadzly Amar Jamil & Maheshwara Rao Appannan & Alan Swee Hock Ch’ng & Irene Looi & Kalaiarasu M. Peariasamy, 2022. "Spatial Dynamics and Multiscale Regression Modelling of Population Level Indicators for COVID-19 Spread in Malaysia," IJERPH, MDPI, vol. 19(4), pages 1-13, February.
    3. Yang Yang & Han Lin Shang & Joel E. Cohen, 2022. "Temporal and spatial Taylor's law: Application to Japanese subnational mortality rates," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1979-2006, October.
    4. Xu, Meng & Jiang, Mengke & Wang, Hua-Feng, 2021. "Integrating metabolic scaling variation into the maximum entropy theory of ecology explains Taylor's law for individual metabolic rate in tropical forests," Ecological Modelling, Elsevier, vol. 455(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Meng & Jiang, Mengke & Wang, Hua-Feng, 2021. "Integrating metabolic scaling variation into the maximum entropy theory of ecology explains Taylor's law for individual metabolic rate in tropical forests," Ecological Modelling, Elsevier, vol. 455(C).
    2. Joel E. Cohen & Christina Bohk & Roland Rau, 2018. "Gompertz, Makeham, and Siler models explain Taylor's law in human mortality data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 38(29), pages 773-842.
    3. Molini, A. & Talkner, P. & Katul, G.G. & Porporato, A., 2011. "First passage time statistics of Brownian motion with purely time dependent drift and diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1841-1852.
    4. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    5. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    6. Jaiswal, Sreeja & Balietti, Anca & Schäffer, Daniel, 2023. "Environmental Protection and Labor Market Composition," Working Papers 0736, University of Heidelberg, Department of Economics.
    7. Gilles Sénécal & Pierre J. Hamel & Jean-Pierre Collin & Kathryn Jastremski & Nathalie Vachon & Marie-Ève Lafortune, 2013. "Daily Mobility and Residential Migrations in the Montréal Metropolitan Region," SAGE Open, , vol. 3(3), pages 21582440134, June.
    8. Michael Tong & Berhanu Wondmagegn & Jianjun Xiang & Alana Hansen & Keith Dear & Dino Pisaniello & Blesson Varghese & Jianguo Xiao & Le Jian & Benjamin Scalley & Monika Nitschke & John Nairn & Hilary B, 2022. "Hospitalization Costs of Respiratory Diseases Attributable to Temperature in Australia and Projections for Future Costs in the 2030s and 2050s under Climate Change," IJERPH, MDPI, vol. 19(15), pages 1-16, August.
    9. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    10. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    11. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    12. Louise Bedsworth, 2012. "California’s local health agencies and the state’s climate adaptation strategy," Climatic Change, Springer, vol. 111(1), pages 119-133, March.
    13. Yongwang Cao & Xiong He & Chunshan Zhou, 2023. "Characteristics and Influencing Factors of Population Migration under Different Population Agglomeration Patterns—A Case Study of Urban Agglomeration in China," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    14. Menconi, M.E. & Giordano, S. & Grohmann, D., 2022. "Revisiting global food production and consumption patterns by developing resilient food systems for local communities," Land Use Policy, Elsevier, vol. 119(C).
    15. Saitoh, Takashi & Cohen, Joel E., 2018. "Environmental variability and density dependence in the temporal Taylor’s law," Ecological Modelling, Elsevier, vol. 387(C), pages 134-143.
    16. Fisher, Brendan & Christopher, Treg, 2007. "Poverty and biodiversity: Measuring the overlap of human poverty and the biodiversity hotspots," Ecological Economics, Elsevier, vol. 62(1), pages 93-101, April.
    17. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    18. Alper Ozpinar, 2023. "A Hyper-Integrated Mobility as a Service (MaaS) to Gamification and Carbon Market Enterprise Architecture Framework for Sustainable Environment," Energies, MDPI, vol. 16(5), pages 1-22, March.
    19. Flückiger, Matthias & Ludwig, Markus, 2022. "Temperature and risk of diarrhoea among children in Sub-Saharan Africa," World Development, Elsevier, vol. 160(C).
    20. Johnston, Robert J. & Ramachandran, Mahesh & Schultz, Eric T. & Segerson, Kathleen & Besedin, Elena Y., 2011. "Characterizing Spatial Pattern in Ecosystem Service Values when Distance Decay Doesn’t Apply: Choice Experiments and Local Indicators of Spatial Association," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103374, Agricultural and Applied Economics Association.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0226096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.