IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0224940.html
   My bibliography  Save this article

How to design a dose-finding study on combined agents: Choice of design and development of R functions

Author

Listed:
  • Monia Ezzalfani

Abstract

Background: In oncology, the aim of dose-finding phase I studies is to find the maximum tolerated dose for further studies. The use of combinations of two or more agents is increasing. Several dose-finding designs have been proposed for this situation. Numerous publications have however pointed out the complexity of evaluating therapies in combination due to difficulties in choosing between different designs for an actual trial, as well as complications related to their implementation and application in practice. Methods: In this work, we propose R functions for Wang and Ivanova’s approach. These functions compute the dose for the next patients enrolled and provide a simulation study in order to calibrate the design before it is applied and to assess the performance of the design in different scenarios of dose-toxicity relationships. This choice of the method was supported by a simulation study which the aim was to compare two designs in the context of an actual phase I trial: i) in 2005, Wang and Ivanova developed an empirical three-parameter model-based method in Bayesian inference, ii) in 2008, Yuan and Yin proposed a simple, adaptive two-dimensional dose-finding design. In particular, they converted the two-dimensional dose-finding trial to a series of one-dimensional dose-finding sub-trials by setting the dose of one drug at a fixed level. The performance assessment of Wang’s design was then compared with those of designs presented in the paper by Hirakawa et al. (2015) in their simulation context. Results and conclusion: It is recommended to assess the performances of the designs in the context of the clinical trial before beginning the trial. The two-dimensional dose-finding design proposed by Wang and Ivanova is a comprehensive approach that yields good performances. The two R functions that we propose can facilitate the use of this design in practice.

Suggested Citation

  • Monia Ezzalfani, 2019. "How to design a dose-finding study on combined agents: Choice of design and development of R functions," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-24, November.
  • Handle: RePEc:plo:pone00:0224940
    DOI: 10.1371/journal.pone.0224940
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224940
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0224940&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0224940?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anastasia Ivanova & Se Hee Kim, 2009. "Dose Finding for Continuous and Ordinal Outcomes with a Monotone Objective Function: A Unified Approach," Biometrics, The International Biometric Society, vol. 65(1), pages 307-315, March.
    2. Nolan A. Wages & Mark R. Conaway & John O'Quigley, 2011. "Continual Reassessment Method for Partial Ordering," Biometrics, The International Biometric Society, vol. 67(4), pages 1555-1563, December.
    3. Kai Wang & Anastasia Ivanova, 2005. "Two-Dimensional Dose Finding in Discrete Dose Space," Biometrics, The International Biometric Society, vol. 61(1), pages 217-222, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunyan Cai & Ying Yuan & Yuan Ji, 2014. "A Bayesian dose finding design for oncology clinical trials of combinational biological agents," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 159-173, January.
    2. Beibei Guo & Suyu Liu, 2018. "Optimal Benchmark for Evaluating Drug-Combination Dose-Finding Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 184-201, April.
    3. Márcio A. Diniz & Sungjin Kim & Mourad Tighiouart, 2020. "A Bayesian Adaptive Design in Cancer Phase I Trials Using Dose Combinations with Ordinal Toxicity Grades," Stats, MDPI, vol. 3(3), pages 1-18, July.
    4. Sean M. Devlin & Alexia Iasonos & John O’Quigley, 2021. "Phase I clinical trials in adoptive T‐cell therapies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 815-834, August.
    5. B. Nebiyou Bekele & Yisheng Li & Yuan Ji, 2010. "Risk-Group-Specific Dose Finding Based on an Average Toxicity Score," Biometrics, The International Biometric Society, vol. 66(2), pages 541-548, June.
    6. Guosheng Yin & Ying Yuan, 2009. "Bayesian dose finding in oncology for drug combinations by copula regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 211-224, May.
    7. Koichi Hashizume & Jun Tshuchida & Takashi Sozu, 2022. "Flexible use of copula‐type model for dose‐finding in drug combination clinical trials," Biometrics, The International Biometric Society, vol. 78(4), pages 1651-1661, December.
    8. Nolan A. Wages & Mark R. Conaway & John O'Quigley, 2011. "Continual Reassessment Method for Partial Ordering," Biometrics, The International Biometric Society, vol. 67(4), pages 1555-1563, December.
    9. Xuelin Huang & Swati Biswas & Yasuhiro Oki & Jean-Pierre Issa & Donald A. Berry, 2007. "A Parallel Phase I/II Clinical Trial Design for Combination Therapies," Biometrics, The International Biometric Society, vol. 63(2), pages 429-436, June.
    10. Guosheng Yin & Ying Yuan, 2009. "A Latent Contingency Table Approach to Dose Finding for Combinations of Two Agents," Biometrics, The International Biometric Society, vol. 65(3), pages 866-875, September.
    11. Pavel Mozgunov & Rochelle Knight & Helen Barnett & Thomas Jaki, 2021. "Using an Interaction Parameter in Model-Based Phase I Trials for Combination Treatments? A Simulation Study," IJERPH, MDPI, vol. 18(1), pages 1-19, January.
    12. Pavel Mozgunov & Thomas Jaki, 2020. "An information theoretic approach for selecting arms in clinical trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1223-1247, December.
    13. Bethany Jablonski Horton & Nolan A. Wages & Ryan D. Gentzler, 2021. "Bayesian Design for Identifying Cohort-Specific Optimal Dose Combinations Based on Multiple Endpoints: Application to a Phase I Trial in Non-Small Cell Lung Cancer," IJERPH, MDPI, vol. 18(21), pages 1-10, October.
    14. Thomas M. Braun & Shufang Wang, 2010. "A Hierarchical Bayesian Design for Phase I Trials of Novel Combinations of Cancer Therapeutic Agents," Biometrics, The International Biometric Society, vol. 66(3), pages 805-812, September.
    15. Beibei Guo & Elizabeth Garrett‐Mayer & Suyu Liu, 2021. "A Bayesian phase I/II design for cancer clinical trials combining an immunotherapeutic agent with a chemotherapeutic agent," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1210-1229, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0224940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.