IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0221667.html
   My bibliography  Save this article

Functional similarity and competitive symmetry control productivity in mixtures of Mediterranean perennial grasses

Author

Listed:
  • Luna Morcillo
  • Azucena Camacho-Garzón
  • Juan Sebastián Calderón
  • Susana Bautista

Abstract

Competition is a major factor structuring plant communities and controlling their productivity. The functional similarity between the interacting species and the context resource availability are assumed to be most critical factors that modulate the strength, sign, and outcome of plant competition, yet their roles and interactions are subjected to debate. In a glasshouse experiment, we constructed monocultures and bi-specific cultures of three common perennial grasses of Mediterranean drylands, the short grass Brachypodium retusum and the tussock grasses Stipa tenacissima and Lygeum spartum, and investigated how the functional similarity between these species modulate their interactions and culture productivity under contrasting levels of water availability. Regardless the degree of functional similarity between the interacting species, B. retusum consistently exhibited a greater competitive ability than the other two species, followed by L. spartum, and with S. tenacissima behaving as the weakest competitor. Bi-specific cultures of B. retusum and either L. spartum or S. tenacissima produced higher biomass than the average biomass of the respective monocultures (i.e. overyielding), whereas the combination of the most similar species, L. spartum—S. tenacissima, which exhibited the highest competition symmetry (i.e., the more similar mutual impact), did not show any significant overyielding. Higher water availability increased productivity and promoted transgressive overyielding for the most dissimilar species, B. retusum and L. spartum, which however exhibited intermediate competition asymmetry. This study calls attention to the thin line between differences in functional traits and competition asymmetry that could eventually lead to either competitive exclusion or resource partitioning and coexistence.

Suggested Citation

  • Luna Morcillo & Azucena Camacho-Garzón & Juan Sebastián Calderón & Susana Bautista, 2019. "Functional similarity and competitive symmetry control productivity in mixtures of Mediterranean perennial grasses," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-17, August.
  • Handle: RePEc:plo:pone00:0221667
    DOI: 10.1371/journal.pone.0221667
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221667
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0221667&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0221667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan A Bennett & James F Cahill Jr., 2012. "Evaluating the Relationship between Competition and Productivity within a Native Grassland," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-9, August.
    2. Michel Loreau & Andy Hector, 2001. "Partitioning selection and complementarity in biodiversity experiments," Nature, Nature, vol. 412(6842), pages 72-76, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pachepsky, Elizaveta & Bown, James L. & Eberst, Alistair & Bausenwein, Ursula & Millard, Peter & Squire, Geoff R. & Crawford, John W., 2007. "Consequences of intraspecific variation for the structure and function of ecological communities Part 2: Linking diversity and function," Ecological Modelling, Elsevier, vol. 207(2), pages 277-285.
    2. Sarah R. Weiskopf & Forest Isbell & Maria Isabel Arce-Plata & Moreno Di Marco & Mike Harfoot & Justin Johnson & Susannah B. Lerman & Brian W. Miller & Toni Lyn Morelli & Akira S. Mori & Ensheng Weng &, 2024. "Biodiversity loss reduces global terrestrial carbon storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Tekwa, EW & Giles, Rachel K & Davis, Alexandra CD, 2022. "Theoretical foundation and empirical assessment of representation and meritocracy in academia," SocArXiv 4bd9r_v1, Center for Open Science.
    4. Zhao, Zhengxin & Li, Zongyang & Li, Yao & Yu, Lianyu & Gu, Xiaobo & Cai, Huanjie, 2024. "Supplementary irrigation and reduced nitrogen application improve the productivity, water and nitrogen use efficiency of maize-soybean intercropping system in the semi-humid drought-prone region of Ch," Agricultural Water Management, Elsevier, vol. 305(C).
    5. Guangzhou Wang & Haley M. Burrill & Laura Y. Podzikowski & Maarten B. Eppinga & Fusuo Zhang & Junling Zhang & Peggy A. Schultz & James D. Bever, 2023. "Dilution of specialist pathogens drives productivity benefits from diversity in plant mixtures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Horna, Daniela & Katungi, Enid & Kwikiriza, Norman, 2011. "Estimating the role of spatial varietal diversity on crop productivity within an abatement framework: The case of banana in Uganda," IFPRI discussion papers 01051, International Food Policy Research Institute (IFPRI).
    7. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.
    8. Angelos Amyntas & Nico Eisenhauer & Stefan Scheu & Bernhard Klarner & Krassimira Ilieva-Makulec & Anna-Maria Madaj & Benoit Gauzens & Jingyi Li & Anton M. Potapov & Benjamin Rosenbaum & Leonardo Bassi, 2024. "Soil community history strengthens belowground multitrophic functioning across plant diversity levels in a grassland experiment," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Jonathan S. Lefcheck & Graham J. Edgar & Rick D. Stuart-Smith & Amanda E. Bates & Conor Waldock & Simon J. Brandl & Stuart Kininmonth & Scott D. Ling & J. Emmett Duffy & Douglas B. Rasher & Aneil F. A, 2021. "Species richness and identity both determine the biomass of global reef fish communities," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Jasmin A Godbold & Rutger Rosenberg & Martin Solan, 2009. "Species-Specific Traits Rather Than Resource Partitioning Mediate Diversity Effects on Resource Use," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-9, October.
    11. Luiz A. Domeignoz-Horta & Seraina L. Cappelli & Rashmi Shrestha & Stephanie Gerin & Annalea K. Lohila & Jussi Heinonsalo & Daniel B. Nelson & Ansgar Kahmen & Pengpeng Duan & David Sebag & Eric Verrecc, 2024. "Plant diversity drives positive microbial associations in the rhizosphere enhancing carbon use efficiency in agricultural soils," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Barbara Emmenegger & Julien Massoni & Christine M. Pestalozzi & Miriam Bortfeld-Miller & Benjamin A. Maier & Julia A. Vorholt, 2023. "Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Liting Zheng & Kathryn E. Barry & Nathaly R. Guerrero-Ramírez & Dylan Craven & Peter B. Reich & Kris Verheyen & Michael Scherer-Lorenzen & Nico Eisenhauer & Nadia Barsoum & Jürgen Bauhus & Helge Bruel, 2024. "Effects of plant diversity on productivity strengthen over time due to trait-dependent shifts in species overyielding," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Shanin, Vladimir & Komarov, Alexander & Khoraskina, Yulia & Bykhovets, Sergey & Linkosalo, Tapio & Mäkipää, Raisa, 2013. "Carbon turnover in mixed stands: Modelling possible shifts under climate change," Ecological Modelling, Elsevier, vol. 251(C), pages 232-245.
    15. Ulrich, Werner & Gotelli, Nicholas J. & Strona, Giovanni & Godsoe, William, 2024. "Reconsidering the Price equation: Benchmarking the analytical power of additive partitioning in ecology," Ecological Modelling, Elsevier, vol. 491(C).
    16. Jean Trap & Patricia Mahafaka Ranoarisoa & Usman Irshad & Claude Plassard, 2021. "Richness of Rhizosphere Organisms Affects Plant P Nutrition According to P Source and Mobility," Agriculture, MDPI, vol. 11(2), pages 1-9, February.
    17. Schaub, Sergei & Buchmann, Nina & Lüscher, Andreas & Finger, Robert, 2020. "Economic benefits from plant species diversity in intensively managed grasslands," Ecological Economics, Elsevier, vol. 168(C).
    18. Sergei Schaub & Nadja El Benni, 2024. "How do price (risk) changes influence farmers’ preferences to reduce fertilizer application?," Agricultural Economics, International Association of Agricultural Economists, vol. 55(2), pages 365-383, March.
    19. Denise M. Finney & Samantha Garritano & Matthew Kenwood, 2021. "Forage Species Identity Shapes Soil Biota in a Temperate Agroecosystem," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    20. Huang, Wei & Manevska-Tasevska, Gordana & Hansson, Helena, 2024. "Does ecologization matter for technical efficiency in crop production? A case of Swedish agriculture," Land Use Policy, Elsevier, vol. 138(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0221667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.