IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0220782.html
   My bibliography  Save this article

Graph convolutional network approach applied to predict hourly bike-sharing demands considering spatial, temporal, and global effects

Author

Listed:
  • Tae San Kim
  • Won Kyung Lee
  • So Young Sohn

Abstract

Solving the supply–demand imbalance is the most crucial issue for stable implementation of a public bike-sharing system. This gap can be reduced by increasing the accuracy of demand prediction by considering spatial and temporal properties of bike demand. However, only a few attempts have been made to account for both features simultaneously. Therefore, we propose a prediction framework based on graph convolutional networks. Our framework reflects not only spatial dependencies among stations, but also various temporal patterns over different periods. Additionally, we consider the influence of global variables, such as weather and weekday/weekend to reflect non-station-level changes. We compare our framework to other baseline models using the data from Seoul’s bike-sharing system. Results show that our approach has better performance than existing prediction models.

Suggested Citation

  • Tae San Kim & Won Kyung Lee & So Young Sohn, 2019. "Graph convolutional network approach applied to predict hourly bike-sharing demands considering spatial, temporal, and global effects," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-16, September.
  • Handle: RePEc:plo:pone00:0220782
    DOI: 10.1371/journal.pone.0220782
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220782
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0220782&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0220782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaolu Zhou, 2015. "Understanding Spatiotemporal Patterns of Biking Behavior by Analyzing Massive Bike Sharing Data in Chicago," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-20, October.
    2. Yanyong Guo & Jibiao Zhou & Yao Wu & Zhibin Li, 2017. "Identifying the factors affecting bike-sharing usage and degree of satisfaction in Ningbo, China," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-19, September.
    3. Motoaki, Yutaka & Daziano, Ricardo A., 2015. "A hybrid-choice latent-class model for the analysis of the effects of weather on cycling demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 217-230.
    4. Regue, Robert & Recker, Will, 2014. "Proactive vehicle routing with inferred demand to solve the bikesharing rebalancing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 192-209.
    5. Nankervis, Max, 1999. "The effect of weather and climate on bicycle commuting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(6), pages 417-431, August.
    6. Ying Zhang & Tom Thomas & M J G Brussel & M F A M van Maarseveen, 2016. "Expanding Bicycle-Sharing Systems: Lessons Learnt from an Analysis of Usage," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-25, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Hongliang & Lu, Yuhuan & Sze, N.N. & Li, Haojie, 2022. "Effect of dockless bike-sharing scheme on the demand for London Cycle Hire at the disaggregate level using a deep learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 150-163.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wessel, Jan, 2020. "Using weather forecasts to forecast whether bikes are used," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 537-559.
    2. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    3. Liu, Hung-Chi & Lin, Jen-Jia, 2019. "Associations of built environments with spatiotemporal patterns of public bicycle use," Journal of Transport Geography, Elsevier, vol. 74(C), pages 299-312.
    4. Bean, Richard & Pojani, Dorina & Corcoran, Jonathan, 2021. "How does weather affect bikeshare use? A comparative analysis of forty cities across climate zones," Journal of Transport Geography, Elsevier, vol. 95(C).
    5. Stefan Gössling & Christoph Neger & Robert Steiger & Rainer Bell, 2023. "Weather, climate change, and transport: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1341-1360, September.
    6. Namkung, Ok Stella & Park, Jonghan & Ko, Joonho, 2023. "Public bike users’ annual travel distance: Findings from combined data of user survey and annual rental records," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    7. Meng, Si'an & Brown, Anne, 2021. "Docked vs. dockless equity: Comparing three micromobility service geographies," Journal of Transport Geography, Elsevier, vol. 96(C).
    8. Shuhong Ma & Yechao Zhou & Zhoulin Yu & Yan Zhang, 2019. "College Students’ Shared Bicycle Use Behavior Based on the NL Model and Factor Analysis," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    9. Jain, Taru & Wang, Xinyi & Rose, Geoffrey & Johnson, Marilyn, 2018. "Does the role of a bicycle share system in a city change over time? A longitudinal analysis of casual users and long-term subscribers," Journal of Transport Geography, Elsevier, vol. 71(C), pages 45-57.
    10. Schimohr, Katja & Scheiner, Joachim, 2021. "Spatial and temporal analysis of bike-sharing use in Cologne taking into account a public transit disruption," Journal of Transport Geography, Elsevier, vol. 92(C).
    11. Yuanyuan Zhang & Yuming Zhang, 2018. "Associations between Public Transit Usage and Bikesharing Behaviors in The United States," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    12. Downward, Paul & Rasciute, Simona, 2015. "Assessing the impact of the National Cycle Network and physical activity lifestyle on cycling behaviour in England," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 425-437.
    13. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    14. Cai, Yutong & Ong, Ghim Ping & Meng, Qiang, 2022. "Dynamic bicycle relocation problem with broken bicycles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    15. Vandenbulcke, Grégory & Dujardin, Claire & Thomas, Isabelle & Geus, Bas de & Degraeuwe, Bart & Meeusen, Romain & Panis, Luc Int, 2011. "Cycle commuting in Belgium: Spatial determinants and 're-cycling' strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 118-137, February.
    16. Verma, Meghna & Rahul, T.M. & Reddy, Peesari Vamshidhar & Verma, Ashish, 2016. "The factors influencing bicycling in the Bangalore city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 29-40.
    17. Mengwei Chen & Dianhai Wang & Yilin Sun & E. Owen D. Waygood & Wentao Yang, 2020. "A comparison of users’ characteristics between station-based bikesharing system and free-floating bikesharing system: case study in Hangzhou, China," Transportation, Springer, vol. 47(2), pages 689-704, April.
    18. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    19. Jaroslav Burian & Lenka Zajíčková & Igor Ivan & Karel Macků, 2018. "Attitudes and Motivation to Use Public or Individual Transport: A Case Study of Two Middle-Sized Cities," Social Sciences, MDPI, vol. 7(6), pages 1-25, May.
    20. Bernadeta Gołębiowska & Anna Bartczak & Mikołaj Czajkowski, 2020. "Energy Demand Management and Social Norms," Energies, MDPI, vol. 13(15), pages 1-20, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0220782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.