IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v165y2022ics1366554522002575.html
   My bibliography  Save this article

Dynamic bicycle relocation problem with broken bicycles

Author

Listed:
  • Cai, Yutong
  • Ong, Ghim Ping
  • Meng, Qiang

Abstract

In response to the demand imbalance across stations with broken bicycles in a bicycle sharing system (BSS), this study proposes a novel decision problem that aims to determine the size of the fleet of relocation vehicles, the bicycle stations they are assigned to serve, and efficient adaptive routing plans to ensure a good level of bicycle inventory at each station and on a timely basis, by considering the broken bicycles in each station, which is referred to as the dynamic bicycle relocation problem with broken bicycle consideration (a.k.a DBRPB). Assuming that the numbers of broken bicycles and bicycle relocation demand at each bicycle station are independent random variables and will only be revealed upon the arrival of the relocation vehicle, the objective of the DBRPB is to maximize the expected total satisfied demand, comprising both relocation demand and broken bicycle demand, using the adaptive routing strategy while incorporating the deployment cost of the relocation vehicles. The relocation vehicle will adjust its relocation route after the actual demand is revealed, every time it visits a station. A tailored branch-and-price (B&P) approach is proposed to find the exact optimal solution of the DBRPB. To solve the pricing problem, a tailored Markov decision process (MDP) is formulated in the pricing problem of the B&P approach, to determine both the optimal value of the expected satisfied demand and the next station to visit, given the available information, including time, current station, the unordered set of unvisited stations and the bicycle inventory of the relocation vehicle. A hybrid heuristic method incorporating variable neighbourhood search (VNS) and partial optimization is further proposed to solve the large-scale problem. Numerical experiments using a randomly generated BSS network and the Nanjing BSS respectively are conducted to validate the efficiency and effectiveness of the proposed methodology as well as to obtain insights into the impacts of key parameters on the solution.

Suggested Citation

  • Cai, Yutong & Ong, Ghim Ping & Meng, Qiang, 2022. "Dynamic bicycle relocation problem with broken bicycles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
  • Handle: RePEc:eee:transe:v:165:y:2022:i:c:s1366554522002575
    DOI: 10.1016/j.tre.2022.102877
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554522002575
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2022.102877?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    2. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.
    3. Regue, Robert & Recker, Will, 2014. "Proactive vehicle routing with inferred demand to solve the bikesharing rebalancing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 192-209.
    4. Dell’Amico, Mauro & Iori, Manuel & Novellani, Stefano & Subramanian, Anand, 2018. "The Bike sharing Rebalancing Problem with Stochastic Demands," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 362-380.
    5. Huang, Di & Chen, Xinyuan & Liu, Zhiyuan & Lyu, Cheng & Wang, Shuaian & Chen, Xuewu, 2020. "A static bike repositioning model in a hub-and-spoke network framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    6. Ashish Kabra & Elena Belavina & Karan Girotra, 2020. "Bike-Share Systems: Accessibility and Availability," Management Science, INFORMS, vol. 66(9), pages 3803-3824, September.
    7. Cheng, Yao & Wang, Junwei & Wang, Yan, 2021. "A user-based bike rebalancing strategy for free-floating bike sharing systems: A bidding model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    8. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Tang, Fang, 2020. "Static rebalancing optimization with considering the collection of malfunctioning bikes in free-floating bike sharing system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    9. Pu He & Fanyin Zheng & Elena Belavina & Karan Girotra, 2021. "Customer Preference and Station Network in the London Bike-Share System," Management Science, INFORMS, vol. 67(3), pages 1392-1412, March.
    10. Li, Yanfeng & Liu, Yang, 2021. "The static bike rebalancing problem with optimal user incentives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    11. Hatem Ben Amor & Jacques Desrosiers & José Manuel Valério de Carvalho, 2006. "Dual-Optimal Inequalities for Stabilized Column Generation," Operations Research, INFORMS, vol. 54(3), pages 454-463, June.
    12. Zhang, Dong & Yu, Chuhang & Desai, Jitamitra & Lau, H.Y.K. & Srivathsan, Sandeep, 2017. "A time-space network flow approach to dynamic repositioning in bicycle sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 188-207.
    13. Alvarez-Valdes, Ramon & Belenguer, Jose M. & Benavent, Enrique & Bermudez, Jose D. & Muñoz, Facundo & Vercher, Enriqueta & Verdejo, Francisco, 2016. "Optimizing the level of service quality of a bike-sharing system," Omega, Elsevier, vol. 62(C), pages 163-175.
    14. Erdoğan, Güneş & Battarra, Maria & Wolfler Calvo, Roberto, 2015. "An exact algorithm for the static rebalancing problem arising in bicycle sharing systems," European Journal of Operational Research, Elsevier, vol. 245(3), pages 667-679.
    15. Ho, Sin C. & Szeto, W.Y., 2014. "Solving a static repositioning problem in bike-sharing systems using iterated tabu search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 180-198.
    16. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    17. Kaspi, Mor & Raviv, Tal & Tzur, Michal, 2016. "Detection of unusable bicycles in bike-sharing systems," Omega, Elsevier, vol. 65(C), pages 10-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Ran & Wang, Shuaian & Zhen, Lu, 2023. "An extended smart “predict, and optimize” (SPO) framework based on similar sets for ship inspection planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    2. Zhizhen Liu & Ziyi Wu & Feng Tang & Chao Gao & Hong Chen & Wang Xiang, 2024. "Public Bicycle Dispatch Method Based on Spatiotemporal Characteristics of Borrowing and Returning Demands," Sustainability, MDPI, vol. 16(10), pages 1-28, May.
    3. Chen, Qingxin & Ma, Shoufeng & Li, Hongming & Zhu, Ning & He, Qiao-Chu, 2024. "Optimizing bike rebalancing strategies in free-floating bike-sharing systems: An enhanced distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    4. Guo, Yuhan & Li, Jinning & Xiao, Linfan & Allaoui, Hamid & Choudhary, Alok & Zhang, Lufang, 2024. "Efficient inventory routing for Bike-Sharing Systems: A combinatorial reinforcement learning framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qingxin & Ma, Shoufeng & Li, Hongming & Zhu, Ning & He, Qiao-Chu, 2024. "Optimizing bike rebalancing strategies in free-floating bike-sharing systems: An enhanced distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    2. Cheng, Yao & Wang, Junwei & Wang, Yan, 2021. "A user-based bike rebalancing strategy for free-floating bike sharing systems: A bidding model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    3. Chang, Ximing & Wu, Jianjun & Sun, Huijun & Correia, Gonçalo Homem de Almeida & Chen, Jianhua, 2021. "Relocating operational and damaged bikes in free-floating systems: A data-driven modeling framework for level of service enhancement," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 235-260.
    4. Wang, Yi-Jia & Kuo, Yong-Hong & Huang, George Q. & Gu, Weihua & Hu, Yaohua, 2022. "Dynamic demand-driven bike station clustering," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    5. Li, Xiang & Wang, Xianzhe & Feng, Ziyan, 2024. "Dynamic repositioning in bike-sharing systems with uncertain demand: An improved rolling horizon framework," Omega, Elsevier, vol. 126(C).
    6. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Tang, Fang, 2020. "Static rebalancing optimization with considering the collection of malfunctioning bikes in free-floating bike sharing system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    7. Osorio, Jesus & Lei, Chao & Ouyang, Yanfeng, 2021. "Optimal rebalancing and on-board charging of shared electric scooters," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 197-219.
    8. Carlos M. Vallez & Mario Castro & David Contreras, 2021. "Challenges and Opportunities in Dock-Based Bike-Sharing Rebalancing: A Systematic Review," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    9. Lv, Chang & Zhang, Chaoyong & Lian, Kunlei & Ren, Yaping & Meng, Leilei, 2022. "A two-echelon fuzzy clustering based heuristic for large-scale bike sharing repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 160(C), pages 54-75.
    10. Dell’Amico, Mauro & Iori, Manuel & Novellani, Stefano & Subramanian, Anand, 2018. "The Bike sharing Rebalancing Problem with Stochastic Demands," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 362-380.
    11. Lv, Chang & Zhang, Chaoyong & Lian, Kunlei & Ren, Yaping & Meng, Leilei, 2020. "A hybrid algorithm for the static bike-sharing re-positioning problem based on an effective clustering strategy," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 1-21.
    12. Ye Ding & Jiantong Zhang & Jiaqing Sun, 2022. "Branch-and-Price-and-Cut for the Heterogeneous Fleet and Multi-Depot Static Bike Rebalancing Problem with Split Load," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    13. Gu, Wei & Li, Meng & Wang, Chen & Shang, Jennifer & Wei, Lirong, 2021. "Strategic sourcing selection for bike-sharing rebalancing: An evolutionary game approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    14. Mohammed Elhenawy & Hesham A. Rakha & Youssef Bichiou & Mahmoud Masoud & Sebastien Glaser & Jack Pinnow & Ahmed Stohy, 2021. "A Feasible Solution for Rebalancing Large-Scale Bike Sharing Systems," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    15. Wang, Xu & Sun, Huijun & Zhang, Si & Lv, Ying & Li, Tongfei, 2022. "Bike sharing rebalancing problem with variable demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    16. Maggioni, Francesca & Cagnolari, Matteo & Bertazzi, Luca & Wallace, Stein W., 2019. "Stochastic optimization models for a bike-sharing problem with transshipment," European Journal of Operational Research, Elsevier, vol. 276(1), pages 272-283.
    17. Bahman Lahoorpoor & Hamed Faroqi & Abolghasem Sadeghi-Niaraki & Soo-Mi Choi, 2019. "Spatial Cluster-Based Model for Static Rebalancing Bike Sharing Problem," Sustainability, MDPI, vol. 11(11), pages 1-21, June.
    18. Chen, Qingxin & Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & He, Qiao-Chu, 2023. "A target-based optimization model for bike-sharing systems: From the perspective of service efficiency and equity," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 235-260.
    19. Szeto, W.Y. & Shui, C.S., 2018. "Exact loading and unloading strategies for the static multi-vehicle bike repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 176-211.
    20. Yongji Jia & Wang Zeng & Yanting Xing & Dong Yang & Jia Li, 2020. "The Bike-Sharing Rebalancing Problem Considering Multi-Energy Mixed Fleets and Traffic Restrictions," Sustainability, MDPI, vol. 13(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:165:y:2022:i:c:s1366554522002575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.