IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0220391.html
   My bibliography  Save this article

Evaluating the effects of control interventions and estimating the inapparent infections for dengue outbreak in Hangzhou, China

Author

Listed:
  • Haocheng Wu
  • Chen Wu
  • Qinbao Lu
  • Zheyuan Ding
  • Ming Xue
  • Junfen Lin

Abstract

Background: The number of dengue fever (DF) cases and the number of dengue outbreaks have increased in recent years in Zhejiang Province, China. An unexpected dengue outbreak was reported in Hangzhou in 2017 and caused more than one thousand dengue cases. This study was undertaken to evaluate the effectiveness of the actual control measures, estimate the proportion of inapparent infections during this outbreak and simulate epidemic development based on different levels of control measures taking inapparent infections into consideration. Methods: The epidemic data of dengue cases in Hangzhou, Zhejiang Province, in 2017 and the number of the people exposed to the outbreaks were obtained from the China Information Network System of Disease Prevention and Control. The epidemic without intervention measures was used to estimate the unknown parameters. A susceptible-exposed-infectious/inapparent-recovered (SEIAR) model was used to estimate the effectiveness of the control interventions. The inapparent infections were also evaluated at the same time. Results: In total, 1137 indigenous dengue cases were reported in Hangzhou in 2017. The number of indigenous dengue cases was estimated by the SEIAR model. This number was predicted to reach 6090 by the end of November 2, 2017, if no control measures were implemented. The total number of reported cases was reduced by 81.33% in contrast to the estimated incidence without intervention. The number of average daily inapparent cases was 10.18 times higher than the number of symptomatic cases. The earlier and more rigorously the vector control interventions were implemented, the more effective they were. The results showed that implementing vector control continuously for more than twenty days was more effective than every few days of implementation. Case isolation is not sufficient enough for epidemic control and only reduced the incidence by 38.10% in contrast to the estimated incidence without intervention, even if case isolation began seven days after the onset of the first case. Conclusions: The practical control interventions in the outbreaks that occurred in Hangzhou City were highly effective. The proportion of inapparent infections was large, and it played an important role in transmitting the disease during this epidemic. Early, continuous and high efficacy vector control interventions are necessary to limit the development of a dengue epidemic. Timely diagnosis and case reporting are important in the intervention at an early stage of the epidemic.

Suggested Citation

  • Haocheng Wu & Chen Wu & Qinbao Lu & Zheyuan Ding & Ming Xue & Junfen Lin, 2019. "Evaluating the effects of control interventions and estimating the inapparent infections for dengue outbreak in Hangzhou, China," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-16, August.
  • Handle: RePEc:plo:pone00:0220391
    DOI: 10.1371/journal.pone.0220391
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220391
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0220391&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0220391?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    2. Tianmu Chen & Ross Ka-kit Leung & Zi Zhou & Ruchun Liu & Xixing Zhang & Lijie Zhang, 2014. "Investigation of Key Interventions for Shigellosis Outbreak Control in China," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    3. Zhihao Li & Tao Liu & Guanghu Zhu & Hualiang Lin & Yonghui Zhang & Jianfeng He & Aiping Deng & Zhiqiang Peng & Jianpeng Xiao & Shannon Rutherford & Runsheng Xie & Weilin Zeng & Xing Li & Wenjun Ma, 2017. "Dengue Baidu Search Index data can improve the prediction of local dengue epidemic: A case study in Guangzhou, China," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(3), pages 1-13, March.
    4. Erickson, Richard A. & Presley, Steven M. & Allen, Linda J.S. & Long, Kevin R. & Cox, Stephen B., 2010. "A dengue model with a dynamic Aedes albopictus vector population," Ecological Modelling, Elsevier, vol. 221(24), pages 2899-2908.
    5. Wenti Xu & Tianmu Chen & Xiaochun Dong & Mei Kong & Xiuzhi Lv & Lin Li, 2017. "Outbreak detection and evaluation of a school-based influenza-like-illness syndromic surveillance in Tianjin, China," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-10, September.
    6. Cailly, Priscilla & Tran, Annelise & Balenghien, Thomas & L’Ambert, Grégory & Toty, Céline & Ezanno, Pauline, 2012. "A climate-driven abundance model to assess mosquito control strategies," Ecological Modelling, Elsevier, vol. 227(C), pages 7-17.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laith Hussain-Alkhateeb & Tatiana Rivera Ramírez & Axel Kroeger & Ernesto Gozzer & Silvia Runge-Ranzinger, 2021. "Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-25, September.
    2. Pi Guo & Tao Liu & Qin Zhang & Li Wang & Jianpeng Xiao & Qingying Zhang & Ganfeng Luo & Zhihao Li & Jianfeng He & Yonghui Zhang & Wenjun Ma, 2017. "Developing a dengue forecast model using machine learning: A case study in China," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(10), pages 1-22, October.
    3. Tiago França Melo De Lima & Raquel Martins Lana & Tiago Garcia De Senna Carneiro & Cláudia Torres Codeço & Gabriel Souza Machado & Lucas Saraiva Ferreira & Líliam César De Castro Medeiros & Clodoveu A, 2016. "DengueME: A Tool for the Modeling and Simulation of Dengue Spatiotemporal Dynamics," IJERPH, MDPI, vol. 13(9), pages 1-21, September.
    4. Haramboure, Marion & Labbé, Pierrick & Baldet, Thierry & Damiens, David & Gouagna, Louis Clément & Bouyer, Jérémy & Tran, Annelise, 2020. "Modelling the control of Aedes albopictus mosquitoes based on sterile males release techniques in a tropical environment," Ecological Modelling, Elsevier, vol. 424(C).
    5. Dan Liu & Songjing Guo & Mingjun Zou & Cong Chen & Fei Deng & Zhong Xie & Sheng Hu & Liang Wu, 2019. "A dengue fever predicting model based on Baidu search index data and climate data in South China," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-16, December.
    6. Sakirul Khan & Sheikh Mohammad Fazle Akbar & Takaaki Yahiro & Mamun Al Mahtab & Kazunori Kimitsuki & Takehiro Hashimoto & Akira Nishizono, 2022. "Dengue Infections during COVID-19 Period: Reflection of Reality or Elusive Data Due to Effect of Pandemic," IJERPH, MDPI, vol. 19(17), pages 1-12, August.
    7. Shengzhang Dong & George Dimopoulos, 2023. "Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    9. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    10. Dominik Kiemel & Ann-Sophie Helene Kroell & Solène Denolly & Uta Haselmann & Jean-François Bonfanti & Jose Ignacio Andres & Brahma Ghosh & Peggy Geluykens & Suzanne J. F. Kaptein & Lucas Wilken & Piet, 2024. "Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Hone-Jay Chu & Bo-Cheng Lin & Ming-Run Yu & Ta-Chien Chan, 2016. "Minimizing Spatial Variability of Healthcare Spatial Accessibility—The Case of a Dengue Fever Outbreak," IJERPH, MDPI, vol. 13(12), pages 1-11, December.
    12. Cheng-Te Lin & Yu-Sheng Huang & Lu-Wen Liao & Chung-Te Ting, 2020. "Measuring Consumer Willingness to Pay to Reduce Health Risks of Contracting Dengue Fever," IJERPH, MDPI, vol. 17(5), pages 1-15, March.
    13. Amy R. Krystosik & Andrew Curtis & A. Desiree LaBeaud & Diana M. Dávalos & Robinson Pacheco & Paola Buritica & Álvaro A. Álvarez & Madhav P. Bhatta & Jorge Humberto Rojas Palacios & Mark A. James, 2018. "Neighborhood Violence Impacts Disease Control and Surveillance: Case Study of Cali, Colombia from 2014 to 2016," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
    14. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    15. Gerhart Knerer & Christine S M Currie & Sally C Brailsford, 2020. "The economic impact and cost-effectiveness of combined vector-control and dengue vaccination strategies in Thailand: results from a dynamic transmission model," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(10), pages 1-32, October.
    16. Benjamin Lopez-Jimena & Michaël Bekaert & Mohammed Bakheit & Sieghard Frischmann & Pranav Patel & Etienne Simon-Loriere & Louis Lambrechts & Veasna Duong & Philippe Dussart & Graham Harold & Cheikh Fa, 2018. "Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(5), pages 1-22, May.
    17. Adriana Zubieta-Zavala & Guillermo Salinas-Escudero & Adrian Ramírez-Chávez & Luis García-Valladares & Malaquias López-Cervantes & Juan Guillermo López Yescas & Luis Durán-Arenas, 2016. "Calculation of the Average Cost per Case of Dengue Fever in Mexico Using a Micro-Costing Approach," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 10(8), pages 1-14, August.
    18. Fazli Wahid & Dr.Sajjad Ali & Jan Muhammad, 2021. "Effective Sources of Information in Winter Seasonal Diseases: The Perception of Residents of District Buner, KP," Journal of Media & Communication (JMC), Ilma University, Faculty of Media & Design, vol. 1(2), pages 215-229.
    19. Maria Glória Teixeira & Enny S Paixão & Maria da Conceição N Costa & Rivaldo V Cunha & Luciano Pamplona & Juarez P Dias & Camila A Figueiredo & Maria Aparecida A Figueiredo & Ronald Blanton & Vanessa , 2015. "Arterial Hypertension and Skin Allergy Are Risk Factors for Progression from Dengue to Dengue Hemorrhagic Fever: A Case Control Study," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(5), pages 1-8, May.
    20. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0220391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.