IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0220361.html
   My bibliography  Save this article

Targeted optimal-path problem for electric vehicles with connected charging stations

Author

Listed:
  • Fengjie Fu
  • Hongzhao Dong

Abstract

Path planning for electric vehicles (EVs) can alleviate the limited cruising range and “range anxiety”. Many existing path optimization models cannot produce satisfactory solutions due to the imposition of too many assumptions and simplifications. The targeted optimal-path problem for electric vehicles (EV-TOP), which is proposed in the paper, aims at identifying the targeted optimal path for EVs under the limited battery level. It minimizes the travel cost, which is composed of the travel time and the total time that is spent at charging stations (CSs). The model is much more realistic due to the prediction and the consideration of the waiting times at CSs and more accurate approximations of the electricity consumption function and the charging function. Charging station information and the road traffic state are utilized to calculate the travel cost. The EV-TOP is decomposed into two subproblems: a constrained optimal path problem in the network (EV1-COP) and a shortest path problem in the meta-network (EV2-SP). To solve the EV1-COP, the Lagrangian relaxation algorithm, the simple efficient approximation (SEA) algorithm, and the Martins (MS) deletion algorithm are used. The EV2-SP is solved using Dijkstra’s algorithm. Thus, a polynomial-time approximation algorithm for the EV-TOP is developed. Finally, two computational studies are presented. The first study assesses the performance of the travel cost method. The second study evaluates the performance of our EV-TOP by comparing it with a well-known method.

Suggested Citation

  • Fengjie Fu & Hongzhao Dong, 2019. "Targeted optimal-path problem for electric vehicles with connected charging stations," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-23, August.
  • Handle: RePEc:plo:pone00:0220361
    DOI: 10.1371/journal.pone.0220361
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220361
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0220361&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0220361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hung, Ying-Chao & PakHai Lok, Horace & Michailidis, George, 2022. "Optimal routing for electric vehicle charging systems with stochastic demand: A heavy traffic approximation approach," European Journal of Operational Research, Elsevier, vol. 299(2), pages 526-541.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jingjing & Nian, Victor & Jiao, Jianling, 2022. "Diffusion and benefits evaluation of electric vehicles under policy interventions based on a multiagent system dynamics model," Applied Energy, Elsevier, vol. 309(C).
    2. Ye, Rui-Ke & Gao, Zhuang-Fei & Fang, Kai & Liu, Kang-Li & Chen, Jia-Wei, 2021. "Moving from subsidy stimulation to endogenous development: A system dynamics analysis of China's NEVs in the post-subsidy era," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    3. Zhao, Dan & Ji, Shou-feng & Wang, He-ping & Jiang, Li-wen, 2021. "How do government subsidies promote new energy vehicle diffusion in the complex network context? A three-stage evolutionary game model," Energy, Elsevier, vol. 230(C).
    4. Zhu, Lijing & Wang, Jingzhou & Farnoosh, Arash & Pan, Xunzhang, 2022. "A game-theory analysis of electric vehicle adoption in Beijing under license plate control policy," Energy, Elsevier, vol. 244(PA).
    5. Haizhen Wu & Weiguo Fan & Jianchang Lu, 2021. "Researching on the Sustainability of Transportation Industry Based on a Coupled Emergy and System Dynamics Model: A Case Study of Qinghai," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    6. Kacperski, Celina & Ulloa, Roberto & Klingert, Sonja & Kirpes, Benedikt & Kutzner, Florian, 2022. "Impact of incentives for greener battery electric vehicle charging – A field experiment," Energy Policy, Elsevier, vol. 161(C).
    7. Shen, Yung-Shuen & Huang, Guan-Ting & Chang-Chien, Chien-Li & Huang, Lance Hongwei & Kuo, Chien-Hung & Hu, Allen H., 2023. "The impact of passenger electric vehicles on carbon reduction and environmental impact under the 2050 net zero policy in Taiwan," Energy Policy, Elsevier, vol. 183(C).
    8. Muhammad Asim & Muhammad Usman & Muhammad Salman Abbasi & Saad Ahmad & M. A. Mujtaba & Manzoore Elahi M. Soudagar & Abdullah Mohamed, 2022. "Estimating the Long-Term Effects of National and International Sustainable Transport Policies on Energy Consumption and Emissions of Road Transport Sector of Pakistan," Sustainability, MDPI, vol. 14(9), pages 1-19, May.
    9. Ren, Guizhou & Wang, Jinzhong & Chen, Changlei & Wang, Haoran, 2021. "A variable-voltage ultra-capacitor/battery hybrid power source for extended range electric vehicle," Energy, Elsevier, vol. 231(C).
    10. Daniele Stampatori & Pier Paolo Raimondi & Michel Noussan, 2020. "Li-Ion Batteries: A Review of a Key Technology for Transport Decarbonization," Energies, MDPI, vol. 13(10), pages 1-23, May.
    11. Mo Chen & Rudy X. J. Liu & Chaochao Liu, 2021. "How to Improve the Market Penetration of New Energy Vehicles in China: An Agent-Based Model with a Three-Level Variables Structure," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    12. Gudzuks Gustavs & Cakula Sarma, 2019. "Modelling Support Mechanism Impact on Electric Vehicle Registration in Latvia," Economics and Business, Sciendo, vol. 33(1), pages 127-139, January.
    13. Shuang Huang & Abraham Y. Nahm & Zengji Song, 2023. "Government subsidies of new energy vehicle industry and enterprise innovation: Moderating role of chief executive officers' technical background," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(4), pages 2137-2147, June.
    14. Lei Zhang & Yingqi Liu & Beibei Pang & Bingxiang Sun & Ari Kokko, 2020. "Second Use Value of China’s New Energy Vehicle Battery: A View Based on Multi-Scenario Simulation," Sustainability, MDPI, vol. 12(1), pages 1-25, January.
    15. Yao, Xusheng & Ma, Shoufeng & Bai, Yin & Jia, Ning, 2022. "When are new energy vehicle incentives effective? Empirical evidence from 88 pilot cities in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 207-224.
    16. Li, Yina & Liang, Chenchen & Ye, Fei & Zhao, Xiande, 2023. "Designing government subsidy schemes to promote the electric vehicle industry: A system dynamics model perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    17. Wang, Junling & Cheng, Siyu & Guo, Xinyu & Xu, Xin & Wang, Zehao, 2024. "An evolutionary analysis of the diffusion of low-carbon technology innovation in supply networks," Research in International Business and Finance, Elsevier, vol. 70(PB).
    18. Jianjun Dong & Yuanxian Xu & Bon-gang Hwang & Rui Ren & Zhilong Chen, 2019. "The Impact of Underground Logistics System on Urban Sustainable Development: A System Dynamics Approach," Sustainability, MDPI, vol. 11(5), pages 1-21, February.
    19. Zhuge, Chengxiang & Wei, Binru & Shao, Chunfu & Shan, Yuli & Dong, Chunjiao, 2020. "The role of the license plate lottery policy in the adoption of Electric Vehicles: A case study of Beijing," Energy Policy, Elsevier, vol. 139(C).
    20. Alberto Broatch & Pablo Olmeda & Pau Bares & Sebastián Aceros, 2022. "Integral Thermal Management Studies in Winter Conditions with a Global Model of a Battery-Powered Electric Bus," Energies, MDPI, vol. 16(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0220361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.