IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0220165.html
   My bibliography  Save this article

PS-SiZer map to investigate significant features of body-weight profile changes in HIV infected patients in the IeDEA Collaboration

Author

Listed:
  • Jaroslaw Harezlak
  • Samiha Sarwat
  • Kara Wools-Kaloustian
  • Michael Schomaker
  • Eric Balestre
  • Matthew Law
  • Sasisopin Kiertiburanakul
  • Matthew Fox
  • Diana Huis in ‘t Veld
  • Beverly Sue Musick
  • Constantin Theodore Yiannoutsos

Abstract

Objectives: We extend the method of Significant Zero Crossings of Derivatives (SiZer) to address within-subject correlations of repeatedly collected longitudinal biomarker data and the computational aspects of the methodology when analyzing massive biomarker databases. SiZer is a powerful visualization tool for exploring structures in curves by mapping areas where the first derivative is increasing, decreasing or does not change (plateau) thus exploring changes and normalization of biomarkers in the presence of therapy. Methods: We propose a penalized spline SiZer (PS-SiZer) which can be expressed as a linear mixed model of the longitudinal biomarker process to account for irregularly collected data and within-subject correlations. Through simulations we show how sensitive PS-SiZer is in detecting existing features in longitudinal data versus existing versions of SiZer. In a real-world data analysis PS-SiZer maps are used to map areas where the first derivative of weight change after antiretroviral therapy (ART) start is significantly increasing, decreasing or does not change, thus exploring the durability of weight increase after the start of therapy. We use weight data repeatedly collected from persons living with HIV initiating ART in five regions in the International Epidemiologic Databases to Evaluate AIDS (IeDEA) worldwide collaboration and compare the durability of weight gain between ART regimens containing and not containing the drug stavudine (d4T), which has been associated with shorter durability of weight gain. Results: Through simulations we show that the PS-SiZer is more accurate in detecting relevant features in longitudinal data than existing SiZer variants such as the local linear smoother (LL) SiZer and the SiZer with smoothing splines (SS-SiZer). In the illustration we include data from 185,010 persons living with HIV who started ART with a d4T (53.1%) versus non-d4T (46.9%) containing regimen. The largest difference in durability of weight gain identified by the SiZer maps was observed in Southern Africa where weight gain in patients treated with d4T-containing regimens lasted 59.9 weeks compared to 133.8 weeks for those with non-d4T-containing regimens. In the other regions, persons receiving d4T-containing regimens experienced weight gains lasting 38–62 weeks versus 55–93 weeks in those receiving non-d4T-based regimens. Discussion: PS-SiZer, a SiZer variant, can handle irregularly collected longitudinal data and within-subject correlations and is sensitive in detecting even subtle features in biomarker curves.

Suggested Citation

  • Jaroslaw Harezlak & Samiha Sarwat & Kara Wools-Kaloustian & Michael Schomaker & Eric Balestre & Matthew Law & Sasisopin Kiertiburanakul & Matthew Fox & Diana Huis in ‘t Veld & Beverly Sue Musick & Con, 2020. "PS-SiZer map to investigate significant features of body-weight profile changes in HIV infected patients in the IeDEA Collaboration," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-20, May.
  • Handle: RePEc:plo:pone00:0220165
    DOI: 10.1371/journal.pone.0220165
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220165
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0220165&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0220165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hannig, J. & Marron, J.S., 2006. "Advanced Distribution Theory for SiZer," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 484-499, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sørbye, Sigrunn H. & Hindberg, Kristian & Olsen, Lena R. & Rue, Håvard, 2009. "Bayesian multiscale feature detection of log-spectral densities," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3746-3754, September.
    2. Lasse Holmström & Leena Pasanen, 2017. "Statistical Scale Space Methods," International Statistical Review, International Statistical Institute, vol. 85(1), pages 1-30, April.
    3. Duong, Tarn & Cowling, Arianna & Koch, Inge & Wand, M.P., 2008. "Feature significance for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4225-4242, May.
    4. Cheolwoo Park & Yongho Jeon & Kee-Hoon Kang, 2016. "An exploratory data analysis in scale-space for interval-valued data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2643-2660, October.
    5. Park, Cheolwoo & Godtliebsen, Fred & Taqqu, Murad & Stoev, Stilian & Marron, J.S., 2007. "Visualization and inference based on wavelet coefficients, SiZer and SiNos," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5994-6012, August.
    6. Vuollo, Ville & Holmström, Lasse, 2018. "A scale space approach for exploring structure in spherical data," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 57-69.
    7. Vogt, Michael & Linton, Oliver, 2020. "Multiscale clustering of nonparametric regression curves," Journal of Econometrics, Elsevier, vol. 216(1), pages 305-325.
    8. Park, Cheolwoo & Kang, Kee-Hoon, 2008. "SiZer analysis for the comparison of regression curves," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 3954-3970, April.
    9. Gámiz, Maria Luz & Nozal-Cañadas, Rafael & Raya-Miranda, Rocío, 2020. "TTT-SiZer: A graphic tool for aging trends recognition," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    10. Stein Olav Skrøvseth & Johan Gustav Bellika & Fred Godtliebsen, 2012. "Causality in Scale Space as an Approach to Change Detection," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-14, December.
    11. Huh, Jib & Park, Cheolwoo, 2015. "Theoretical investigation of an exploratory approach for log-density in scale-space," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 272-279.
    12. Park, Cheolwoo & Huh, Jib, 2013. "Statistical inference and visualization in scale-space using local likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 336-348.
    13. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    14. Nils-Bastian Heidenreich & Anja Schindler & Stefan Sperlich, 2013. "Bandwidth selection for kernel density estimation: a review of fully automatic selectors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 403-433, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0220165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.