IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v125y2018icp57-69.html
   My bibliography  Save this article

A scale space approach for exploring structure in spherical data

Author

Listed:
  • Vuollo, Ville
  • Holmström, Lasse

Abstract

A novel scale space approach, SphereSiZer, is proposed for exploring structure in spherical data, that is, directional data on the unit sphere of the three-dimensional Euclidean space. The method finds statistically significant gradients of the smooths of the probability density function underlying the observed data. Bootstrap is used to establish significance and inference is summarized with planar maps of contour plots of smooths of the data, overlaid with arrows that indicate the directions and magnitudes of the significant gradients. An effective way to explore such maps is a movie where each frame corresponds to a fixed level of smoothing, that is, a particular spatial scale on the sphere. The SphereSiZer is demonstrated using simulated data as well as two real-data examples. The first example examines the distribution of infant head normal vector directions. The presence of local maxima in the normal vector distribution may indicate head deformity, such as severe flatness or asymmetry. The second example considers the distribution of earthquakes in the Northern Hemisphere.

Suggested Citation

  • Vuollo, Ville & Holmström, Lasse, 2018. "A scale space approach for exploring structure in spherical data," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 57-69.
  • Handle: RePEc:eee:csdana:v:125:y:2018:i:c:p:57-69
    DOI: 10.1016/j.csda.2018.03.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947318300744
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.03.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hannig, J. & Marron, J.S., 2006. "Advanced Distribution Theory for SiZer," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 484-499, June.
    2. Lasse Holmström & Kyösti Karttunen & Jussi Klemelä, 2017. "Estimation of level set trees using adaptive partitions," Computational Statistics, Springer, vol. 32(3), pages 1139-1163, September.
    3. Lasse Holmström & Leena Pasanen, 2017. "Statistical Scale Space Methods," International Statistical Review, International Statistical Institute, vol. 85(1), pages 1-30, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    2. Rosa M. Crujeiras & Paula Saavedra-Nieves, 2021. "Comments on: Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 64-67, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sørbye, Sigrunn H. & Hindberg, Kristian & Olsen, Lena R. & Rue, Håvard, 2009. "Bayesian multiscale feature detection of log-spectral densities," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3746-3754, September.
    2. Jaroslaw Harezlak & Samiha Sarwat & Kara Wools-Kaloustian & Michael Schomaker & Eric Balestre & Matthew Law & Sasisopin Kiertiburanakul & Matthew Fox & Diana Huis in ‘t Veld & Beverly Sue Musick & Con, 2020. "PS-SiZer map to investigate significant features of body-weight profile changes in HIV infected patients in the IeDEA Collaboration," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-20, May.
    3. Kristian Hindberg & Jan Hannig & Fred Godtliebsen, 2019. "A novel scale-space approach for multinormality testing and the k-sample problem in the high dimension low sample size scenario," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-20, January.
    4. Cheolwoo Park & Yongho Jeon & Kee-Hoon Kang, 2016. "An exploratory data analysis in scale-space for interval-valued data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2643-2660, October.
    5. Park, Cheolwoo & Godtliebsen, Fred & Taqqu, Murad & Stoev, Stilian & Marron, J.S., 2007. "Visualization and inference based on wavelet coefficients, SiZer and SiNos," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5994-6012, August.
    6. Vogt, Michael & Linton, Oliver, 2020. "Multiscale clustering of nonparametric regression curves," Journal of Econometrics, Elsevier, vol. 216(1), pages 305-325.
    7. Park, Cheolwoo & Kang, Kee-Hoon, 2008. "SiZer analysis for the comparison of regression curves," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 3954-3970, April.
    8. Huh, Jib & Park, Cheolwoo, 2015. "Theoretical investigation of an exploratory approach for log-density in scale-space," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 272-279.
    9. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    10. Lasse Holmström & Leena Pasanen, 2017. "Statistical Scale Space Methods," International Statistical Review, International Statistical Institute, vol. 85(1), pages 1-30, April.
    11. Duong, Tarn & Cowling, Arianna & Koch, Inge & Wand, M.P., 2008. "Feature significance for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4225-4242, May.
    12. Gámiz, Maria Luz & Nozal-Cañadas, Rafael & Raya-Miranda, Rocío, 2020. "TTT-SiZer: A graphic tool for aging trends recognition," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    13. Stein Olav Skrøvseth & Johan Gustav Bellika & Fred Godtliebsen, 2012. "Causality in Scale Space as an Approach to Change Detection," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-14, December.
    14. Park, Cheolwoo & Huh, Jib, 2013. "Statistical inference and visualization in scale-space using local likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 336-348.
    15. Nils-Bastian Heidenreich & Anja Schindler & Stefan Sperlich, 2013. "Bandwidth selection for kernel density estimation: a review of fully automatic selectors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 403-433, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:125:y:2018:i:c:p:57-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.