IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i11p3746-3754.html
   My bibliography  Save this article

Bayesian multiscale feature detection of log-spectral densities

Author

Listed:
  • Sørbye, Sigrunn H.
  • Hindberg, Kristian
  • Olsen, Lena R.
  • Rue, Håvard

Abstract

A fully-automatic Bayesian visualization tool to identify periodic components of evenly sampled stationary time series, is presented. The given method applies the multiscale ideas of the SiZer-methodology to the log-spectral density of a given series. The idea is to detect significant peaks in the true underlying curve viewed at different resolutions or scales. The results are displayed in significance maps, illustrating for which scales and for which frequencies, peaks in the log-spectral density are detected as significant. The inference involved in producing the significance maps is performed using the recently developed simplified Laplace approximation. This is a Bayesian deterministic approach used to get accurate estimates of posterior marginals for latent Gaussian Markov random fields at a low computational cost, avoiding the use of Markov chain Monte Carlo techniques. Application of the given exploratory tool is illustrated analyzing both synthetic and real time series.

Suggested Citation

  • Sørbye, Sigrunn H. & Hindberg, Kristian & Olsen, Lena R. & Rue, Håvard, 2009. "Bayesian multiscale feature detection of log-spectral densities," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3746-3754, September.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:11:p:3746-3754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00127-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hannig, J. & Marron, J.S., 2006. "Advanced Distribution Theory for SiZer," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 484-499, June.
    2. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    3. Nidhan Choudhuri & Subhashis Ghosal & Anindya Roy, 2004. "Bayesian Estimation of the Spectral Density of a Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1050-1059, December.
    4. Oigard, Tor Arne & Rue, Havard & Godtliebsen, Fred, 2006. "Bayesian multiscale analysis for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1719-1730, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Cheolwoo & Huh, Jib, 2013. "Statistical inference and visualization in scale-space using local likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 336-348.
    2. Cheolwoo Park & Yongho Jeon & Kee-Hoon Kang, 2016. "An exploratory data analysis in scale-space for interval-valued data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2643-2660, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheolwoo Park & Yongho Jeon & Kee-Hoon Kang, 2016. "An exploratory data analysis in scale-space for interval-valued data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2643-2660, October.
    2. Huh, Jib & Park, Cheolwoo, 2015. "Theoretical investigation of an exploratory approach for log-density in scale-space," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 272-279.
    3. Park, Cheolwoo & Huh, Jib, 2013. "Statistical inference and visualization in scale-space using local likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 336-348.
    4. Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
    5. Leonardo Padilla & Bernado Lagos‐Álvarez & Jorge Mateu & Emilio Porcu, 2020. "Space‐time autoregressive estimation and prediction with missing data based on Kalman filtering," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    6. Scott, Ryan P. & Scott, Tyler A., 2019. "Investing in collaboration for safety: Assessing grants to states for oil and gas distribution pipeline safety program enhancement," Energy Policy, Elsevier, vol. 124(C), pages 332-345.
    7. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    8. Brown, Paul T. & Joshi, Chaitanya & Joe, Stephen & Rue, Håvard, 2021. "A novel method of marginalisation using low discrepancy sequences for integrated nested Laplace approximations," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    9. Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
    10. Michaela Prokešová & Eva Jensen, 2013. "Asymptotic Palm likelihood theory for stationary point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 387-412, April.
    11. Shreosi Sanyal & Thierry Rochereau & Cara Nichole Maesano & Laure Com-Ruelle & Isabella Annesi-Maesano, 2018. "Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France," IJERPH, MDPI, vol. 15(11), pages 1-8, November.
    12. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    13. Daniela Silva & Raquel Menezes & Ana Moreno & Ana Teles-Machado & Susana Garrido, 2024. "Environmental Effects on the Spatiotemporal Variability of Sardine Distribution Along the Portuguese Continental Coast," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 553-575, September.
    14. David Jiménez-Hernández & Víctor González-Calatayud & Ana Torres-Soto & Asunción Martínez Mayoral & Javier Morales, 2020. "Digital Competence of Future Secondary School Teachers: Differences According to Gender, Age, and Branch of Knowledge," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    15. Vanessa Santos-Sánchez & Juan Antonio Córdoba-Doña & Javier García-Pérez & Antonio Escolar-Pujolar & Lucia Pozzi & Rebeca Ramis, 2020. "Cancer Mortality and Deprivation in the Proximity of Polluting Industrial Facilities in an Industrial Region of Spain," IJERPH, MDPI, vol. 17(6), pages 1-15, March.
    16. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    17. Yuan Yan & Eva Cantoni & Chris Field & Margaret Treble & Joanna Mills Flemming, 2023. "Spatiotemporal modeling of mature‐at‐length data using a sliding window approach," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    18. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    19. Xin Jin, 2021. "Can we imitate the principal investor's behavior to learn option price?," Papers 2105.11376, arXiv.org, revised Jan 2022.
    20. Jamie L. Cross & Chenghan Hou & Aubrey Poon, 2018. "International Transmission of Macroeconomic Uncertainty in Small Open Economies: An Empirical Approach," Working Papers No 12/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:11:p:3746-3754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.